Answer:
3.31m/s
Explanation:
Angular momentum for 3s is



Moment if inertia is


Angular speed
ω = L/I

The speed of each ball is
V = ωL

Hi!
The answer is <span>B. Language influences how people understand their world.
Hope this helps!
-Payshence xoxo</span>
If you remember the formula for potential energy,
then this question is a piece-o-cake.
<em>Potential energy = (mass) x (<u>acceleration of gravity</u>) x (height) .</em>
-- The object's mass is the same everywhere.
-- You said that the height is the same both times.
-- How about the acceleration of gravity ?
Compared to gravity on Earth, it's only 16.5 percent as much on the Moon.
So naturally, from the formula, you'd expect the Potential Energy to be less
on the Moon.
Answer:
because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.
1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.