1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
3 years ago
13

The entire system of components that produces power and transmits it to the road is called the vehicle's _____.

Engineering
1 answer:
IrinaK [193]3 years ago
6 0

Answer:

Powertrain

Explanation:

You might be interested in
3 examples of technology transfer pls
OLEGan [10]

Answer: electrical, mathematical, and geographical

Explanation: Yee  

                              - Cash Nasty

3 0
3 years ago
Read 2 more answers
Very thin films are usually deposited under vacuum conditions to prevent contamination and ensure that atoms can fly directly fr
katrin [286]

Answer:

a. 9947 m

b. 99476 times

c. 2*10^11 molecules

Explanation:

a) To find the mean free path of the air molecules you use the following formula:

\lambda=\frac{RT}{\sqrt{2}\pi d^2N_AP}

R: ideal gas constant = 8.3144 Pam^3/mol K

P: pressure = 1.5*10^{-6} Pa

T: temperature = 300K

N_A: Avogadros' constant = 2.022*10^{23}molecules/mol

d: diameter of the particle = 0.25nm=0.25*10^-9m

By replacing all these values you obtain:

\lambda=\frac{(8.3144 Pa m^3/mol K)(300K)}{\sqrt{2}\pi (0.25*10^{-9}m)^2(6.02*10^{23})(1.5*10^{-6}Pa)}=9947.62m

b) If we assume that the molecule, at the average, is at the center of the chamber, the times the molecule will collide is:

n_{collision}=\frac{9947.62m}{0.05m}\approx198952\  times

c) By using the equation of the ideal gases you obtain:

PV=NRT\\\\N=\frac{PV}{RT}=\frac{(1.5*10^{-6}Pa)(\frac{4}{3}\pi(0.05m)^3)}{(8.3144Pa\ m^3/mol\ K)(300K)}=3.14*10^{-13}mol\\\\n=(3.14*10^{-13})(6.02*10^{23})\ molecules\approx2*10^{11}\ molecules

5 0
3 years ago
How can any student outside apply for studying engineering at Cambridge University​
telo118 [61]
Admission to the Engineering course at Cambridge is highly competitive, both in terms of the numbers and quality of applicants. In considering applicants, Colleges look for evidence both of academic ability and of motivation towards Engineering. There are no absolute standards required of A Level achievement, but it should be noted that the average entrant to the Department has three A* grades. You need to get top marks in Maths and Physics.All Colleges strongly prefer applicants for Engineering to be taking a third subject that is relevant to Engineering.
Hope that helps and good luck if you are applying. Can you please mark this as brainliest and press the thank you button and if you have any further questions please let me know!!
3 0
3 years ago
A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu
Contact [7]

Answer:

T = 167 ° C

Explanation:

To solve the question we have the following known variables

Type of surface = plane wall ,

Thermal conductivity k = 25.0 W/m·K,  

Thickness L = 0.1 m,

Heat generation rate q' = 0.300 MW/m³,

Heat transfer coefficient hc = 400 W/m² ·K,

Ambient temperature T∞ = 32.0 °C

We are to determine the maximum temperature in the wall

Assumptions for the calculation are as follows

  • Negligible heat loss through the insulation
  • Steady state system
  • One dimensional conduction across the wall

Therefore by the one dimensional conduction equation we have

k\frac{d^{2}T }{dx^{2} } +q'_{G} = \rho c\frac{dT}{dt}

During steady state

\frac{dT}{dt} = 0 which gives k\frac{d^{2}T }{dx^{2} } +q'_{G} = 0

From which we have \frac{d^{2}T }{dx^{2} }  = -\frac{q'_{G}}{k}

Considering the boundary condition at x =0 where there is no heat loss

 \frac{dT}{dt} = 0 also at the other end of the plane wall we have

-k\frac{dT }{dx } = hc (T - T∞) at point x = L

Integrating the equation we have

\frac{dT }{dx }  = \frac{q'_{G}}{k} x+ C_{1} from which C₁ is evaluated from the first boundary condition thus

0 = \frac{q'_{G}}{k} (0)+ C_{1}  from which C₁ = 0

From the second integration we have

T  = -\frac{q'_{G}}{2k} x^{2} + C_{2}

From which we can solve for C₂ by substituting the T and the first derivative into the second boundary condition s follows

-k\frac{q'_{G}L}{k} = h_{c}( -\frac{q'_{G}L^{2} }{k}  + C_{2}-T∞) → C₂ = q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞

T(x) = \frac{q'_{G}}{2k} x^{2} + q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞ and T(x) = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} )-x^{2} )

∴ Tmax → when x = 0 = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} ))

Substituting the values we get

T = 167 ° C

4 0
3 years ago
Pls list up to five key lessons and knowledge areas that you have acquired in this course about operations management. How do yo
Aneli [31]

Explanation:

Production planning: Planning is ideal so that there are the right resources, at the right time and in the right quantity that can meet the production needs of a period.

Strategies: The strategic development of production is the area that will assist in organizational competitiveness and in meeting consumer demand and needs.

Product and service design: Development of new products and services and their improvement, innovations and greater benefits

Production systems: Study of physical arrangements so that production takes place effectively according to the ideal layout for each type of product or service.

Production capacity planning: Analysis of the short, medium and long term related to production, and identification if necessary to obtain more resources, increase in staff, machinery, etc., to meet present and future demands.

<em>Each area of ​​knowledge acquired will assist in the development of a professional career, as technical knowledge is essential in decision-making, provision, problem solving, the development of new ideas and innovation.</em>

3 0
3 years ago
Other questions:
  • 7 Single-use earplugs require a professional fitting before they can be used.
    10·2 answers
  • Use the convolutional integral to find the response of an LTI system with impulse response ℎ(????) and input x(????). Sketch the
    8·1 answer
  • Part of the basic procedures is the vehicle check. What does that mean?
    7·1 answer
  • A company that produces footballs uses a proprietary mixture of ideal gases to inflate their footballs. If the temperature of 23
    11·1 answer
  • Selling a new vehicle pays a salesperson $1500. Selling a used vehicle pays a commission of 5% of the selling price. Write an in
    9·1 answer
  • A piston–cylinder device containing carbon dioxide gas undergoes an isobaric process from 15 psia and 80°F to 170°F. Determine t
    15·1 answer
  • Ring rolling is a deformation process in which a thick-walled ring of smaller diameter is rolled into a thin-walled ring of larg
    11·1 answer
  • If a and b are both int arrays, then a b; will
    10·1 answer
  • Air is compressed steadily from 100kPa and 20oC to 1MPa by an adiabatic compressor. If the mass flow rate of the air is 1kg/s an
    12·1 answer
  • 9. Imagine that you're performing measurements on a circuit with a multimeter. You measure a total circuit
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!