1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
2 years ago
6

The ???? − i relationship for an electromagnetic system is given by ???? = 1.2i1/2 g where g is the air-gap length. For current

i = 2 A and g = 10 cm, determine the mechanical force on the moving part
(a) Using the energy of the system
(b) Using the coenergy of the system
Engineering
1 answer:
Artemon [7]2 years ago
8 0

Answer:

a) The mechanical force is -226.2 N

b) Using the coenergy the mechanical force is -226.2 N

Explanation:

a) Energy of the system:

\lambda =\frac{1.2*i^{1/2} }{g} \\i=(\frac{\lambda g}{1.2} )^{2}

\frac{\delta w_{f} }{\delta g} =\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

If i = 2A and g = 10 cm

\lambda =\frac{1.2*i^{1/2} }{g} =\frac{1.2*2^{1/2} }{10x10^{-2} } =16.97

f_{m}=-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }=-\frac{16.97^{3}*2*0.1 }{3*1.2^{2} } =-226.2N

b) Using the coenergy of the system:

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{1.2*2*i^{3/2}  }{3*g^{2} }=-\frac{1.2*2*2^{3/2} }{3*0.1^{2} } =-226.2N

You might be interested in
Please answer fast. With full step by step solution.​
lina2011 [118]

Let <em>f(z)</em> = (4<em>z </em>² + 2<em>z</em>) / (2<em>z </em>² - 3<em>z</em> + 1).

First, carry out the division:

<em>f(z)</em> = 2 + (8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1)

Observe that

2<em>z </em>² - 3<em>z</em> + 1 = (2<em>z</em> - 1) (<em>z</em> - 1)

so you can separate the rational part of <em>f(z)</em> into partial fractions. We have

(8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1) = <em>a</em> / (2<em>z</em> - 1) + <em>b</em> / (<em>z</em> - 1)

8<em>z</em> - 2 = <em>a</em> (<em>z</em> - 1) + <em>b</em> (2<em>z</em> - 1)

8<em>z</em> - 2 = (<em>a</em> + 2<em>b</em>) <em>z</em> - (<em>a</em> + <em>b</em>)

so that <em>a</em> + 2<em>b</em> = 8 and <em>a</em> + <em>b</em> = 2, yielding <em>a</em> = -4 and <em>b</em> = 6.

So we have

<em>f(z)</em> = 2 - 4 / (2<em>z</em> - 1) + 6 / (<em>z</em> - 1)

or

<em>f(z)</em> = 2 - (2/<em>z</em>) (1 / (1 - 1/(2<em>z</em>))) + (6/<em>z</em>) (1 / (1 - 1/<em>z</em>))

Recall that for |<em>z</em>| < 1, we have

\displaystyle\frac1{1-z}=\sum_{n=0}^\infty z^n

Replace <em>z</em> with 1/<em>z</em> to get

\displaystyle\frac1{1-\frac1z}=\sum_{n=0}^\infty z^{-n}

so that by substitution, we can write

\displaystyle f(z) = 2 - \frac2z \sum_{n=0}^\infty (2z)^{-n} + \frac6z \sum_{n=0}^\infty z^{-n}

Now condense <em>f(z)</em> into one series:

\displaystyle f(z) = 2 - \sum_{n=0}^\infty 2^{-n+1} z^{-(n+1)} + 6 \sum_{n=0}^\infty z^{-n-1}

\displaystyle f(z) = 2 - \sum_{n=0}^\infty \left(6+2^{-n+1}\right) z^{-(n+1)}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{-(n-1)+1}\right) z^{-n}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{2-n}\right) z^{-n}

So, the inverse <em>Z</em> transform of <em>f(z)</em> is \boxed{6+2^{2-n}}.

4 0
3 years ago
Let A→=(150iˆ+270jˆ) mm , B→=(300iˆ−450jˆ) mm , and C→=(−100iˆ−250jˆ) mm . Find scalars r and s, if possible, such that R→=rA→+s
ioda

Answer: r = 0.8081; s = -0.07071

Explanation:

A = (150i + 270j) mm

B = (300i - 450j) mm

C = (-100i - 250j) mm

R = rA + sB + C = 0i + 0j

R = r(150i + 270j) + s(300i - 450j) + (-100i - 250j) = 0i + 0j

R = (150r + 300s - 100)i + (270r - 450s - 250)j = 0i + 0j

Equating the i and j components;

150r + 300s - 100 = 0

270r - 450s - 250 = 0

150r + 300s = 100

270r - 450s = 250

solving simultaneously,

r = 0.8081 and s = -0.07071

QED!

5 0
3 years ago
Why must air tanks be drained​
Jobisdone [24]
Water can freeze in cold weather and cause brake failure.
7 0
3 years ago
What are the three elementary parts of a vibrating system?
zhenek [66]

Answer:

the three part are mass, spring, damping

Explanation:

vibrating system consist of three elementary system namely

1) Mass - it is a rigid body due to which system experience vibration and kinetic energy due to vibration is directly proportional to velocity of the body.

2) Spring -  the part that has elasticity and help to hold mass

3) Damping - this part considered to have zero mass and  zero elasticity.

7 0
2 years ago
malott, m. e. (2003). paradox of organizational change: engineering organizations with behavioral systems analysis.
mylen [45]

Answer:

Paradox of Organizational Change: Engineering Organizations with Behavioral Systems Analysis. by. Maria E. Malott.

7 0
1 year ago
Other questions:
  • How many grams of water at 5.00 °C would we need to mix with 140.0 g of water at 85.0 °C to obtain a final temperature of 43.0 °
    6·1 answer
  • Sublimation is to change from
    7·2 answers
  • How to solve this question
    11·1 answer
  • java Write a program that simulates tossing a coin. Prompt the user for how many times to toss the coin. Code a method with no p
    10·2 answers
  • A heat pump and a refrigerator are operating between the same two thermal reservoirs. Which one has a higher COP?
    10·1 answer
  • Water from an upper tank is drained into a lower tank through a 5 cm diameter iron pipe with roughness 2 mm. The entrance to the
    11·1 answer
  • Someone please please help me and explain!! I will give brainliest if right!!!
    9·2 answers
  • lmfsojdkkfjdsskfsaj;fkljsldfkjlsdkfdjs;dklfjsldkfjflkjfkjfldjsdlfgkljshglksdjfghdskjgsdfkfjghlsdfghsdkjfghlskjdfhglskjdfghkjsfhg
    12·1 answer
  • 6.03 Discussion: Then &amp; Now - Safety
    9·1 answer
  • How many meters per second is 100 meters and 10 seconds
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!