Answer:
ηa=0.349
ηb=0.345
Explanation:
The enthalpy and entropy at state 3 are determined from the given pressure and temperature with data from table:

The quality at state 4 is determined from the condition
and the entropies of the components at the condenser pressure taken from table:

The enthalpy at state 4 then is:

Part A
In the case when the water is in a saturated liquid state at the entrance of the pump the enthalpy and specific volume are determined from A-5 for the given pressure:

The enthalpy at state 2 is determined from an energy balance on the pump:

=346.67 kJ/kg
The thermal efficiency is then determined from the heat input and output in the cycle:

Part B
In the case when the water is at a lower temperature than the saturation temperature at the condenser pressure we look into table and see the water is in a compressed liquid state. Then we take the enthalpy and specific volume for that temperature with data from and the saturated liquid values:

The enthalpy at state 2 is then determined from an energy balance on the pump:

=299.79 kJ/kg
The thermal efficiency in this case then is:

Answer:
Hey I found this on You Tube it may help u a lot
Explanation:
https://youtu.be/ab9BdT6fYJ8
Answer:
a) 49.95 watts
b) The self locking condition is satisfied
Explanation:
Given data
weight of the square-thread power screw ( w ) = 100 kg = 1000 N
diameter (d) = 20 mm ,
pitch (p) = 2 mm
friction coefficient of steel parts ( f ) = 0.1
Gravity constant ( g ) = 10 N/kg
Rotation of electric power screwdrivers = 300 rpm
A ) Determine the power needed to raise to the basket board
first we have to calculate T
T = Wtan (∝ + Ф ) *
------------- equation 1
Dm = d - 0.5 ( 2) = 19mm
Tan ∝ =
where L = 2*2 = 4
hence ∝ = 3.83⁰
given f = 0.1 , Tan Ф = 0.1. hence Ф = 5.71⁰
insert all the values into equation 1
T = 1.59 Nm
Determine the power needed using this equation
= 
= 49.95 watts
B) checking if the self-locking condition of the power screw is satisfied
Ф > ∝ hence it is self locking condition is satisfied
Answer:
Explanation:
CO, carbon monoxide is a toxic gas. It casues asphixiation on people and animals by interfering with hemoglobin, not allowing blood to transport oxygen to the cells in the body.
The normal emissions resulting from the combustion of fussil fuels are CO2 (carbon dioxide) and H2O (water). Carbon monoxide is formed by an incomplete combustion of fossil fuels or carbon containing fuels in general, this not only produces toxic gas, but also is an inefficient combustion that wastes energy.