Answer:
1. Conduction
2. Convection
3. Radiation
Explanation:
The 3 modes of heat transfer i an air conditioning system:
1. Conduction:
The transfer of heat by conduction takes place in solid and is when the conduction takes place as a result of direct contact in between the interacting material which transfer the heat energy from particle to particle thus conducting the heat through out the system.
2. Convection:
The other mode for the transfer of heat which takes place especially in fluids - gases and liquids is through the technique of convection in which the transfer of heat takes place by the circular motion of the atoms and molecules of the fluid which carries the heat energy and results in the distribution of the heated fluid in the entire system thus transferring all the heat energy in the entire system.
3. Radiation:
The third mode of heat transfer in the air conditioning system is through radiation. This method transfers the heat by making use of the electro-magnetic radiation in the infra red spectrum where the waves of the spectrum transfers the heat energy with the help of a medium or without any medium at all.
Thus making the radiation method of heat transfer as the only method out of the three methods which does not require the material medium for the transfer of heat energy.
emf generated by the coil is 1.57 V
Explanation:
Given details-
Number of turns of wire- 1000 turns
The diameter of the wire coil- 1 cm
Magnetic field (Initial)= 0.10 T
Magnetic Field (Final)=0.30 T
Time=10 ms
The orientation of the axis of the coil= parallel to the field.
We know that EMF of the coil is mathematically represented as –
E=N(ΔФ/Δt)
Where E= emf generated
ΔФ= change inmagnetic flux
Δt= change in time
N= no of turns*area of the coil
Substituting the values of the above variables
=1000*3.14*0.5*10-4
=.0785
E=0.0785(.2/10*10-3)
=1.57 V
Thus, the emf generated is 1.57 V
Answer:
The correct answer is
option C. current to pneumatic (V/P)
Explanation:
A current to pneumatic controller is basically used to receive an electronic signal from a controller and converts it further into a standard pneumatic output signal which is further used to operate a positioner or control valve. These devices are reliable, robust and accurate.
Though Voltage and current to pressure transducers are collectively called as electro pneumatic tranducers and the only electronic feature to control output pressure in them is the coil.