Answer:
At least 68% of observations lie between 22 and 26 months.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 24
Standard deviation = 2
22 = 24 - 2
22 is one standard deviation below the mean
26 = 24 + 2
26 is one standard deviation above the mean.
So, by the empirical rule, at least 68% of observations lie between 22 and 26 months.
<em>The</em><em> </em><em>rel</em><em>ationship</em><em> </em><em>between</em><em> </em><em><</em><em>a</em><em> </em><em>and</em><em> </em><em><</em><em>B </em><em>is</em><em> </em><em>supplementary</em><em> </em><em>angles</em><em>.</em>
<em>both</em><em> </em><em><</em><em>a</em><em> </em><em>and</em><em> </em><em><</em><em>B </em><em>are</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em>.</em><em>.</em><em>so</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>supplementary</em><em> </em><em>angles</em><em> </em>
<em>Supplementary</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>1</em><em>8</em><em>0</em><em> </em><em> </em><em>degree</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>helpful</em><em> </em><em>to</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em><em> </em><em>.</em><em>.</em><em>.</em>
<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>
Answer:
$9
Step-by-step explanation:
30*(100%-70%)=9
Answer:
one solution the solution being ×=7/2
Step-by-step explanation:
one solution
Try this option:
the final price of the first machine after discount is:
(1-0.3)*495=346.5$;
the final price of the second machine after all the discount is:
(1-(0.2+0.2*0.1))*495=386.1$.
Short explanation: the additional 10% off is 2% of the initial price for the second machine; the final discount of the second machine is 22%.