1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
2 years ago
9

The magnitude of the gravitational field strength near Earth's surface is represented by

Physics
1 answer:
Zanzabum2 years ago
4 0

Answer:

The magnitude of the gravitational field strength near Earth's surface is represented by approximately 9.82\,\frac{m}{s^{2}}.

Explanation:

Let be M and m the masses of the planet and a person standing on the surface of the planet, so that M >> m. The attraction force between the planet and the person is represented by the Newton's Law of Gravitation:

F = G\cdot \frac{M\cdot m}{r^{2}}

Where:

M - Mass of the planet Earth, measured in kilograms.

m - Mass of the person, measured in kilograms.

r - Radius of the Earth, measured in meters.

G - Gravitational constant, measured in \frac{m^{3}}{kg\cdot s^{2}}.

But also, the magnitude of the gravitational field is given by the definition of weight, that is:

F = m \cdot g

Where:

m - Mass of the person, measured in kilograms.

g - Gravity constant, measured in meters per square second.

After comparing this expression with the first one, the following equivalence is found:

g = \frac{G\cdot M}{r^{2}}

Given that G = 6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}, M = 5.972 \times 10^{24}\,kg and r = 6.371 \times 10^{6}\,m, the magnitude of the gravitational field near Earth's surface is:

g = \frac{\left(6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (5.972\times 10^{24}\,kg)}{(6.371\times 10^{6}\,m)^{2}}

g \approx 9.82\,\frac{m}{s^{2}}

The magnitude of the gravitational field strength near Earth's surface is represented by approximately 9.82\,\frac{m}{s^{2}}.

You might be interested in
What's the minimum Out PUT WORK<br> required to raise 14,0m3 of water 26.0m?
BartSMP [9]

Answer:

3.57 MJ

Explanation:

ASSUMING it's fresh water with density of 1000 kg/m³

W = ΔPE = mgΔh = 14.0(1000)(9.81)(26.0) = 3,570,840 J

Salt water would require more.

3 0
2 years ago
A ball, which has a mass of 1.25 kg, is thrown straight up from the top of a building 225 meters tall with a velocity of 52.0 m/
Anastasy [175]

First we will find the speed of the ball just before it will hit the floor

so in order to find the speed of the cart we will first use energy conservation

KE_i + PE_i = KE_f + PE_f

\frac{1}{2}mv_i^2 + mgh = \frac{1}{2}mv_f^2 + 0

\frac{1}{2}(1.25)(52)^2 + 1.25(9.8)(225) = \frac{1}{2}(1.25)v_f^2

So by solving above equation we will have

v_f = 84.3 m/s

now in order to find the momentum we can use

P = mv

P = 1.25 \times 84.3

P = 105.4 kg m/s

3 0
3 years ago
What are some differences you can spot in a periodic table?
Serggg [28]

"The position of each element in the table gives important information about its structure, properties, and behavior in chemical reactions. Specifically, an element's position in the periodic table helps you figure out its electron configuration, how the electrons are organized around the nucleus."

7 0
3 years ago
How does Electromagnetic Energy Travel?
alisha [4.7K]

Answer:

Perpendicular to the electric field and magnetic field

Explanation:

Electromagnetic waves are transverse waves composed by the perpendicular oscillating electric and magnetic fields.

EM waves have both Electrical and magnetic features.

they travel in the velocity of light (3*10⁸ ms⁻¹)

they does not require any media to travel. It has two perpendicular electric field and the magnetic field which are perpendicular to each other

They travel perpendicular to each of those electric and magnetic fields.  

6 0
3 years ago
A length of copper wire carries a current of 14 A, uniformly distributed through its cross section. The wire diameter is 2.5 mm,
gavmur [86]

Answer:

a. ρ_\beta=1.996J/m^3

b. U_E=9.445x10^{-15} J/m^3

Explanation:

a. To find the density of magnetic field given use the gauss law and the equation:

i=14A, d=2.5mm, R=3.3Ω, l=1 km, E_o=8.85x10^{-12}F/m, u_o=4*x10^{-7}H/m

ρ_\beta=\frac{\beta^2}{2*u_o}

ρ_\beta=\frac{1}{2*u_o}*(\frac{u_o*i^2}{2\pi *r})^2

ρ_\beta=\frac{u_o*i^2}{8\pi*r}=\frac{4\pi *10^{-7}H/m*(14A)^2}{8\pi*(1.25x10^{-3}m)^2}

ρ_\beta=1.996J/m^3

b. The electric field can be find using the equation:

U_E=\frac{1}{2}*E_o*E^2

E=(\frac{i*R}{l})^2

U_E=\frac{1}{2}*8.85x10^{-12}*(\frac{14A*3.3}{1000m})^2

U_E=9.445x10^{-15} J/m^3

4 0
3 years ago
Other questions:
  • An automobile is traveling on a long, straight highway at a steady 76.0 mi/h when the driver sees a wreck 180 m ahead. at that i
    15·1 answer
  • Where do the electrons that form the auroras enter the magnetosphere? a. Through holes c. At the equator b. Between the magnetic
    14·2 answers
  • How much electrical is use by a 350 W television that is operating for 25 minutes
    10·2 answers
  • Has an Atomic number of 1.
    5·1 answer
  • HELP ASAP <br> Describe when contact metamorphism occurs?
    9·2 answers
  • Calculate the weight of an apple of mass 100grams on Earth
    15·1 answer
  • A motorcycle skids to a stop on a road.
    5·1 answer
  • Anything that occupies space and has mass is called
    12·1 answer
  • Science assessment help pls
    13·2 answers
  • The weight of an iron block is 8.0±0.3? and is placed on a wooden base of area, 3.5±0.2? 2. Calculate the pressure exerted by th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!