Answer:
741 J/kg°C
Explanation:
Given that
Initial temperature of glass, T(g) = 72° C
Specific heat capacity of glass, c(g) = 840 J/kg°C
Temperature of liquid, T(l)= 40° C
Final temperature, T(2) = 57° C
Specific heat capacity of the liquid, c(l) = ?
Using the relation
Heat gained by the liquid = Heat lost by the glass
m(l).C(l).ΔT(l) = m(g).C(g).ΔT(g)
Since their mass are the same, then
C(l)ΔT(l) = C(g)ΔT(g)
C(l) = C(g)ΔT(g) / ΔT(l)
C(l) = 840 * (72 - 57) / (57 - 40)
C(l) = 12600 / 17
C(l) = 741 J/kg°C
Answer: Normal fault
Explanation:
The type of fault that is explained above is a normal fault. We should note that normal faults typically takes place in a divergent boundary in a scenario where the crusts may have been pulled apart.
Since the crust is pulled apart in this case, it leads to the downward movement of the hanging wall which leads to the football being above the hanging wall.
<h2>Answer with Explanation </h2>
Dalton’s theory can be classified by the following hypotheses:
1) All material was formed of particles, unbreakable and strong construction segments.
2) All particles of a given component are indistinguishable in volume and characteristics
3) Compounds are determined by a mixture of two or more distinct kinds of atoms.
4) Chemical responses appeared in the rearrangement of the reacting atoms.
This theory was to explain all matter in terms of atoms and their characteristics, the law of conservation of volume and the law of constant composition.
Answer:
Coefficient of friction.
Explanation:
The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :

N is normal force.
= coefficient of friction

Answer:
B. - 0.328
Explanation
Potential Energy:<em> This is the energy of a body due to position.</em>
<em>The S.I unit of potential energy is Joules (J).</em>
<em>It can be expressed mathematically as</em>
<em>Ep = mgh........................... Equation 1</em>
<em>Where Ep = potential energy, m = mass of the coin, h = height, g = acceleration due to gravity,</em>
<em>Given: m = 2.74 g = 0.00274 kg, h = 12.2 m, g = 9.8 m/s²</em>
Substituting these values into equation 1
Ep = 0.00274×12.2×9.8
Ep = 0.328 J.
Note: Since the potential energy at the surface is zero, the potential Energy with respect to the surface = -0.328 J
The right option is B. - 0.328
<em />