The correct answer among the options given is B. . When
the forward and reverse paths of a change occur at the same rate, <span>the system is in equilibrium specifically in
dynamic equilibrium.<span> Dynamic equilibrium is
the balance in a process that is continuing. </span></span>
Answer:

Explanation:
Hello there!
In this case, given the T-V variation, we understand it is possible to apply the Charles' law as shown below:

Thus, since we are interested in the initial temperature, we can solve for T1, plug in the volumes and use T2 in kelvins:

Best regards!
Answer:
Head loss in turbulent flow is varying as square of velocity.
Explanation:
As we know that head loss in turbulent flow given as

Where
F is the friction factor.
L is the length of pipe
V is the flow velocity
D is the diameter of pipe.
So from above equation we can say that

It means that head loss in turbulent flow is varying as square of velocity.
We know that loss in flow are of two types
1.Major loss :Due to surface property of pipe
2.Minor loss :Due to change in momentum of fluid.
In a Lewis structure, formal charges can be assigned to each atom by treating each bond as if one-half of the electrons are assigned to each atom. ... Resonance occurs in cases where two or more Lewis structures with identical arrangements of atoms but different distributions of electrons can be written.
Answer:
1360kJ are evolved
Explanation:
When 1mole of H2 reacts with 1/2 moles O2 producing 1 mole of water and 241.8kJ.
To solve this question we need to find the limiting reactant knowing were added 90g of H2 and 90g of O2 as follows:
<em>Moles H2 -Molar mass: 2g/mol-</em>
90g H2 * (1mol / 2g) = 45 moles
<em>Moles O2 -Molar mass: 32g/mol-</em>
90g * (1mol / 32g) = 2.81moles
For a complete reaction of 2.81 moles of O2 are needed:
2.81 moles O2 * (1mol H2 / 1/2 mol O2) = 5.62 moles H2
As there are 45 moles, H2 is the excess reactant and O2 the limiting reactant.
As 1/2 moles O2 produce 241.8kJ, 2.81 moles will produce:
2.81 moles O2 * (241.8kJ / 1/2moles O2) =
<h3>1360kJ are evolved</h3>