Homeostasis is the ability to maintain stable internal conditions B is the answer
Answer:
<u>structural arrangements</u>
_______________________________________
<h2>properties of daimond: </h2><h3>appearance: transparent</h3><h3>hardness: very hard</h3><h3>thermal conductivity :very poor</h3><h3>electric conductivity: poor</h3><h3>density:</h3>

<h3>uses: jewellery and drilling</h3>
_______________________________________
<h2>properties of graphite:</h2>
<h3>appearance: black shiny</h3><h3>hardness: soft ,slippery to touch</h3><h3>thermal conductivity : moderate</h3><h3>electric conductivity: good</h3><h3>density:</h3>

<h3>uses:dry cell, electric arc, pencil lead, lubricant</h3>
_______________________________________
<h2>How Diamond and Graphite are chemically identical?</h2>
- On heating diamond or graphite in the air, they burn completely to form carbon dioxide.
- - Equal quantities of diamond and graphite when burned, produce exactly the same amount of carbon dioxide.
_______________________________________
<h2>Why the physical properties of diamond and graphite are so different?</h2>
Due to the difference in the arrangement of carbon atoms in diamond and graphite
_______________________________________
<h2>
<em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u> you</u></em><em><u><</u></em><em><u>3</u></em></h2>
Answer: The mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1
Explanation:
•Mole ratios are determined using the coefficients of the substances in the balanced chemical equation. •Each coefficient represents the number of mole of each substance in the chemical reaction.
•The mole ratio can be determined by first writing out a balanced chemical equation for the reaction.
For this reaction the balanced chemical equation is
N2(g) + 3H2(g) ----> 2NH3(g)
1mol:3mol : 2mol
From the equation we can see that 1 mole of N2(g) reacts with 3 moles of H2(g) or 3 moles of H2(g) react with 1 mole of N2(g) to produce 2 moles of NH3(g).
Therefore, the mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1