Answer:
<u><em>I HOPE IT WILL BE YOUR ANSWER:</em></u>
Explanation:
As given
60 min = 50 gm (1)
then we know half-life mean half amount decay time
so we can write as the half of 200 is 100 gm hence
T 1/2 = 100 (2)
solving these two equation by cross multiplication we will get
T 1/2 = 120 min
<em><u>THANKS FOR ASKING QUESTION</u></em>
Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J
False.
Hope this helps, Good luck on the assignment.
Answer:
B and BBr3
Explanation:
1) 3HBr + B = BBr3 + H2 (double all equation because H2)
2) 6HBr + <em>2B </em>= <em>2BBr3</em> + 3H2
<span>When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected. </span>