Answer:
E = 5.69x10⁻²⁸m
Explanation:
To solve this question we neeed to convert the wavelength in meters to energy in joules using the equation:
E = hc / λ
<em>Where E is energy in joules, h is Planck's constant = 6.626x10⁻³⁴Js</em>
<em>c is light constant = 3.0x10⁸m/s</em>
<em>And λ is wavelength in meters = 349m</em>
Replacing:
E = 6.626x10⁻³⁴Js*3.0x10⁸m/s / 349m
E = 5.69x10⁻²⁸m
The balanced nuclear equations for the following:(a) β⁻ decay of silicon-32 is (27,14)Si -> (0,-1)beta + (27,15)P
<h3>
What is balanced nuclear equation?</h3>
A nuclear reaction is generally expressed by a nuclear equation, which has the general form, where T is the target nucleus, B is the bombarding particle, R is the residual product nucleus, and E is the ejected particle, and Ai and Zi (where I = 1, 2, 3, 4) are the mass number and atomic number, respectively. Finding a well balanced equation is critical for understanding nuclear reactions. Balanced nuclear equations provide excellent information about the energy released in nuclear reactions. Balancing the nuclear equation requires equating the total atomic number as well as the total mass number before and after the reaction using the rules of atomic number and mass number conservation in a nuclear reaction.
To learn more about nuclear equations visit:
brainly.com/question/12221598
#SPJ4
Some examples are like Russia, Egypt, China, Brazil
Answer: If you think about it, B. would be the most reasonable answer with the given factors.
Using the given formula, the density of the material is 2.015 g/mL
<h3>Calculating Density </h3>
From the question, we are to determine the density of the material
From the given formula
Density = Mass / Volume
And from the given information,
Mass = 65.5 g
and volume = 32.5 mL
Putting the parameters into the equation,
Density = 65.5/32.5
Density = 2.015 g/mL
Hence, the density of the material is 2.015 g/mL.
Learn more on Calculating density here: brainly.com/question/24772401
#SPJ1