Answer:
C
Explanation:
Hope this is right!!!!. Have a great day!!!
-Sarah-
Answer:
5.6L
Explanation:
Given parameters:
number of moles = 0.25mol
pressure on gas = 1atm
temperature = 273K
Gas constant R = 0.0821Latm/molK
Unknown:
Volume of gas = ?
Solution:
Using the ideal gas equation, we can solve this problem. The equation is a combination of the three gas laws: Boyle's law, Charles's law and Avogadro's law.
It is mathematically expressed as;
PV = nRT
where P is the pressure
V is the volume
R is the gas constant
T is the temperature
n is the number of moles
All the parameters are in the appropriate units and we simply solve for the volume of the gas;
1 x V = 0.25 x 0.0821 x 273
V = 5.6L
The magnitude of the work done by the electric field of the membrane is <u>W = 1.28 × 10⁻²⁰ Joules</u>.
We start with the necessity to take into account a value for the voltage present there in order to solve this problem by first considering that the membranes have two layers, one internal and one external, each responsible for producing a potential difference between the two levels.
As a result, in order to find a solution, it is necessary to take into account the potential difference between the two surfaces. In this instance, we'll assume a particular value for the load, but the recipient is free to substitute a different value if they prefer.
The product of the potential difference and the charge is used to define the work that an electric field performs. The charge of the potassium ion will be equal to that of its electron, so,
q = 1.6 × 10⁻¹⁹ Coulombs
Then the Work would be:
W = Vq
Here,
v = Potential difference
q = Charge
The 80mV potential difference we will have is quantified as follows:
W = (80mV (1V/1000mV))( 1.6 × 10⁻¹⁹ C)
W = 1.28 × 10⁻²⁰ Joules is the amount of work that the membrane's electric field has produced.
Find more on work done at : brainly.com/question/25573309
#SPJ4
It will be Control. Part of the experiment used to show that the results of an experiment is really due to the conditions being tested.
The answer is Ser-Arg-Ala-Val-Gly-STOP
It is known that three nucleotide bases on mRNA are called
codon and that each codon codes for the specific amino acid. According to the
genetic code chart, the following mRNA sequence will code for the following
amino acid sequence:
mRNA sequence: <span>UCU CGA GCC GUU GGG UGA</span>
Amino acid sequence: Ser Arg Ala Val Gly STOP