Answer:
Yes, your answers are correct.
The volume of a cone is given by V = 1/3πr²h. Since the diameter of the first cone is 4, the radius is 2; therefore the volume is
V = 1/3π(2²)(8) = 32π/3
We divide the volume of the sink, 2000π/3, by the volume of the cone:
2000π/3 ÷ 32π/3 = 2000π/3 × 3/32π = 6000π/96π = 62.5 ≈ 63.
The diameter of the second conical cup is 8, so the radius is 4. The volume then is:
V = 1/3π(4²)(8) = 128π/3
Dividing the volume of the sink, 2000π/3, by 128π/3:
2000π/3 ÷ 128π/3 = 2000π/3 × 3/128π = 6000π/384π = 15.625 ≈ 16
Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5
Answer:
Step-by-step explanation:
Answer:
Some answers to the reducing fraction sheet
Q14 = 4/5 because divide 12 and 15 by 3
Q15=can't be reduced because 11 is a prime number so it can't be divided by anything
Q17=can't be reduced because 17 is a prime number
Q18=can't be reduced because 13 is a prime number
Q19=38/9 because 114 and 27 would be divided by 3
Q20= -1/1 because you would divide both 14,529 by itself would equal to - 1/1
I can only help you with this sheet I can't help you with the other one hope this was helpful! :)