I think u should follow the formulae F=MA. So I think the answer is 120N
Limited resources: resources that take a long time to replenish
Example: coal, oil, nuclear gas
Non- limited resource: resources that are constantly being replenished
Example: soil, wind, water
Explanation:
Work done is given by the product of force and displacement.
Case 1,
1. A boy lifts a 2-newton box 0.8 meters.
W = 2 N × 0.8 m = 1.6 J
2. A boy lifts a 5-newton box 0.8 meters.
W = 5 N × 0.8 m = 4 J
3. A boy lifts a 8-newton box 0.2 meters.
W = 8 N × 0.2 m = 1.6 J
4. A boy lifts a 10-newton box 0.2 meters.
W = 10 N × 0.2 m = 2 J
Out of the four options, in option (2) ''A boy lifts a 5-newton box 0.8 meters'', the work done is 4 J. Hence, the greatest work done is 4 J.
Answer:
A) Energy is tranferred from Joey to the water. The temperature of the water increases.
Explanation:
At first Joey jumps and gains a height above the water level of the pool, this way has an energy potential initial, as Joey falls into the water his speed is increased that is to say its energy potential is transformed into kinetic energy, and at the moment of impact with the water, this energy kinetic is transformed into heat which is transferred to the water. Therefore the temperature increment.
Note: This is one of the reasons why space agencies are studying spatial asteroids that are directed toward the earth, as these come with great kinetic energy, and great potential energy, if these are of a considerable size can cause catastrophic damage, even if they fall into the ocean, due to the large amount of energy which can cause the instantaneous evaporation of large amounts of water and collateral damage in other areas.
Answer:
Explanation:
Let s be displacement from equilibrium position . Restoring force
m d²s / dt² = - k s
d²s / dt² = - k /m s
Put k /m = ω
d²s / dt² + ω² s = 0
The solution of this differential equation
= s = A cosωt
Now when t = 0 , s = 2 cm
A = 2 cm
Putting the values we have
2 = A cos 0
A = 2 cm
s ( t) = 2 cos ωt