Answer:increasing any of them, either mass or speed by 1unit will cause an increase in energy,
Explanation:
By increasing any of them, either mass or speed will cause an increase in energy.
Because kinetic energy is proportional to mass and also directly proportional to velocity
T = 0.017 s
From the foot to the brain is almost the same as the height. We are not given the height of the woman, but to find "about" how much time, we need a height to work with.
She *could* be 1.7 m <- height = distance
Formula for speed, where k = speed, d = distance, t = time
k = d/t
Rearrange to solve for time:
t = d/k
Substitute known values:
t = (1.7 m) / (100 m/s)
Solve:
t = 0.017 s
Therefore, it takes about 0.017s for the impulse to travel from the foot to the brain.
Answer:
a. 78 degree
Explanation:
According to Snell's Law, we have:
(ni)(Sin θi) = (nr)(Sin θr)
where,
ni = Refractive index of medium on which light is incident
ni = Refractive index of ethyl alcohol = 1.361
nr = Refractive index of medium from which light is refracted
nr = Refractive index of ethyl alcohol = 1.333
θi = Angle of Incidence
θr = Angle of refraction
So, the Angle of Incidence is know as the Critical Angle (θc), when the refracted angle becomes 90°. This is the case of total internal reflection. That is:
θi = θc
when, θr = 90°
Therefore, Snell's Law becomes:
(1.361)(Sin θc) = (1.333)(Sin 90°)
Sin θc = 1.333/1.361
θc = Sin⁻¹ (0.9794)
θc = 78.35° = 78° (Approximately)
Therefore, correct answer will be:
a. <u>78 degree</u>