Answer:
The resistance is 0.124 ohm.
Explanation:
It is common for domestic electrical installations to use copper wire with a diameter of 2.05 mm. Determine the resistance of such a wire with a length of 24.0 m.
diameter, d = 2.05 mm
radius, r = 1.025 mm
Length, L = 24 m
resistivity of copper = 1.7 x 10^-8 ohm m
Let the resistance is R.

Answer is A because the speed and velocity would change. Think of it as GTA, your going 30+ miles per hour and you take a left turn, the speed and velocity would change in an instant..
Hope this helped.
Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed 
mass of
dropped at r=0.3 m from center
let
be the final angular velocity of cylinder
Conserving Angular momentum





Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
<span>Interference can only be explained if light is a wave. Youngs Double Slit experiment proved this, proving the wave nature of light.</span>