<span>No, because the truck applies more pressure than the bridge can support.</span>
A star is located 5.9 light years from Earth.
We know that : 1 light year = 9.46 trillion kilometers.
We will calculate the distance in trillion kilometers multiplying the number of light years by 9.46:
5.9 * 9.46 = 55.814
Answer: The distance is 55.814 trillion km.
Answer:
The value of the average convection coefficient is 20 W/Km².
Explanation:
Given that,
For first object,
Characteristic length = 0.5 m
Surface temperature = 400 K
Atmospheric temperature = 300 K
Velocity = 25 m/s
Air velocity = 5 m/s
Characteristic length of second object = 2.5 m
We have same shape and density of both objects so the reynold number will be same,
We need to calculate the value of the average convection coefficient
Using formula of reynold number for both objects



Here, 


Put the value into the formula


Hence, The value of the average convection coefficient is 20 W/Km².
Answer:
The law of conservation of energy can be seen in these everyday examples of energy transference: Water can produce electricity. Water falls from the sky, converting potential energy to kinetic energy. ... The cue ball loses energy because the energy it had has been transferred to the 8 ball, so the cue ball slows down.
It is strong enough to penetrate through flesh but not bone so we can see if there are fractures or breaks in our skeleton