Excellent work!
Your calculations are correct, but near the end, you have forgotten to cancel u. If you cancel the u, the linear term becomes a constant, and the resultant equation becomes a simple quadratic which is much easier to solve.
I get u=7.468 m/s using g=9.81 (as you did)
You will rework and should get 7.468 m/s as well.
Congrats for the good work!
First solve the potential energy of the biker. using the fomula:
PE = mgh
where m is the mass of the object
g is the acceleration due to gravity ( 9.81 m/s2)
h is the height
PE = 96 kg ( 1120 m ) ( 9.81 m/s2)
PE = 1054771.2 J
then power = Work / time
P = 1054771.2 J / ( 120 min ) ( 60 s / 1 min)
P = 146.5 W
For transverse waves, the waves move in perpendicular direction to the source of vibration. For longitudinal waves, the waves move in parallel direction to the source of vibration . They are similar in the sense that energy is transferred in the form of waves.
Rocks is work well. It worked because it worked
I think that it is apparent magnitude