Answer:
Power_input = 85.71 [W]
Explanation:
To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.
where:
W = work [J] (units of Joules)
F = force [N] (units of Newton)
d = distance [m]
We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.
Now replacing:
Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.
where:
P = power [W] (units of watts)
W = work [J]
t = time = 40 [s]
The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.
Compression and rarefaction are two phenomenon occurs in longitudunal wave!
when there is denser particle gathering in that wave , there we called it compression and the rarer part of particles is rarefaction !
<span>If your options are:
A.Both momentum and kinetic energy are vector quantities.
B.Momentum is a vector quantity and kinetic energy is a scalar quantity.
C.Kinetic energy is a vector quantity and momentum is a scalar quantity.
D.Both momentum and kinetic energy are scalar quantities.
</span>
The answer on the question given is letter B.<span>Momentum is a vector quantity and kinetic energy is a scalar quantity.</span>
1. The velocity of the spacecraft at position 2 is greater than the velocity of the craft at position 4.
This is due the gravity field of the Earth is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.
In this case the craft will be “catched” by the Earth’s gravitational field, making the craft to enter a circular orbit.
2. At point 1, the direction of the spacecraft changes because of the gravitational force between earth and the spacecraft.
As explained in the first answer, this is the exact point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.
3. Position 3 represents the orbital path of Earth
Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished. If the orbital path of the Earth were the opposite, the effect on the craft would be braking.
Note all of these is related to the gravitational assistance, this consists in a maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe or craft, changing its trajectory.
To learn more about velocity of the spacecraft : brainly.com/question/11900446
#SPJ4
Answer:
Heat
Explanation:
Because chemical energy is stored, it is a form of potential energy. When a chemical reaction takes place, the stored chemical energy is released. Heat is often produced as a by-product of a chemical reaction – this is called an exothermic reaction.
Hope this helped.