Atmosphere
Atmospheric gas from prehistoric eras is found trapped in glaciers in the form of bubbles. These gas bubbles are the basis of studying ice cores as they provide us with accurate estimates of the conditions of past climates. The bubbles allow us to determine the composition of atmospheric air, such as the carbon dioxide and methane concentrations, as well as allow us to determine air temperatures in the past.
Answer:
Total energy is constant
Explanation:
The laws of thermodynamics state that thermal energy (heat) is always transferred from a hot body (higher temperature) to a cold body (lower temperature).
This is because in a hot body, the molecules on average have more kinetic energy (they move faster), so by colliding with the molecules of the cold body, they transfer part of their energy to them. So, the temperature of the hot body decreases, while the temperature of the cold body increases.
This process ends when the two bodies reach the same temperature: we talk about thermal equilibrium.
In this problem therefore, this means that the thermal energy is transferred from the hot water to the cold water.
However, the law of conservation of energy states that the total energy of an isolated system is constant: therefore here, if we consider the hot water + cold water as an isolated system (no exchange of energy with the surroundings), this means that their total energy remains constant.
Prokaryotes lack an organized nucleus and other membrane<span>-bound organelles. Prokaryotic DNA is found in a central part of the cell called the nucleoid. The cell wall of a prokaryote </span>acts<span> as an extra </span>layer<span> of protection helps maintain </span>cell shape<span>, and prevents dehydration.
</span>
The answer is the first one. That's because the general theory of relativity is the thing experiencing whatever is experiencing relative to something else. The second answer is just plain wrong. The third answer is just a constant, and doesn't relate to experiencing anything. And the fourth answer is a force between two objects, and it has no second comparison. The first answer is how a subject experiences two different things.
Answer:
C
Explanation:
Angular momentum is the product of moment of inertia and angular velocity.
L = I × ω
Since the planet follows a stable circular orbit, I and ω are constant and non-zero. Therefore, the angular momentum is constant and non-zero.