1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
4 years ago
9

The gravitational force exerted on a solid object is 5.00N. When the object is suspended from a spring scale and submerged compl

etely in water the scale reads 3.50N. Find the density of the object.
Physics
1 answer:
marin [14]4 years ago
4 0

Answer:

3333.33 kg/m³

Explanation:

Density: This can be defined as the ratio of the mass of a body to its volume.

The unit of density is kg/m³.

From Archimedes principle,

R.d = W/U = D/D'

Where R.d = relative density, W = weight of the object in air, u = upthrust in water, D = Density of the object, D' = Density of water.

W/U = D/D'

making D the subject of the equation

D = D'(W/U).......................... Equation 1

Given: W = 5.0 N, U = 5.0 -3.5 = 1.5 N, D' = 1000 kg/m³

Note: U = lost in weight = weight in air - weight in water

Substitute into equation 1

D = 1000(5/1.5)

D = 3333.33 kg/m³

Thus the density of the object = 3333.33 kg/m³

You might be interested in
A manager at a local bank analyzed the relationship between monthly salary and three independent variables: length of service (m
Readme [11.4K]

Answer:

a

Explanation:

8 0
3 years ago
Sodium and phosphorus combine to form Na3P. The name of this compound is .
g100num [7]
Binary ionic compound
5 0
3 years ago
Read 2 more answers
PLEASEEE HELP, thank you :)
telo118 [61]

Answer:

The answer is B.

Explanation:

Given that the <em>current </em>(Ampere) in a series circuit is same so we can ignore it. We can assume that the total voltage is 60V and all the 3 resistance are different, 20Ω, 40Ω and 60Ω. So first, we have to find the total resistance by adding :

Total resistance = 20Ω + 40Ω + 60Ω

= 120Ω

Next, we have to find out that 1Ω is equal to how many voltage by dividing :

120Ω = 60V

1Ω = 60V ÷ 120

1Ω = 0.5V

Lastly, we have to calculate the voltage at R1 so we have to multiply by 20 (R1) :

1Ω = 0.5V

20Ω = 0.5V × 20

20Ω = 10V

8 0
3 years ago
A soccer player takes a corner kick, lofting a stationary ball 33.0° above the horizon at 15.0 m/s. If the soccer ball has a mas
Alexxandr [17]

Explanation:

It is given that,

Mass of the soccer ball, m = 0.425 kg

Speed of the ball, u = 15 m/s

Angle with horizontal, \theta=33^{\circ}

Time for which the player's foot is in contact with it, \Delta t = 5.1\times 10^{-2}\ s

Part A,

The x component of the soccer ball's change in momentum is given by :

\Delta p_x=mv\ cos\theta

\Delta p_x=0.425\times 15\ cos(33)

p_x=5.34\ kg-m/s

The y component of the soccer ball's change in momentum is given by :

\Delta p_y=mv\ sin\theta

\Delta p_y=0.425\times 15\ sin(33)

p_y=3.47\ kg-m/s

Hence, this is the required solution.

3 0
3 years ago
a person throws a ball upward into the air with an initial velocity of 20 m/s. calculate (a) how high it goes, and (b) how long
Phantasy [73]

Answer:

a) about 20.4 meters high

b) about 4.08 seconds

Explanation:

Part a)

To find the maximum height the ball reaches under the action of gravity (g = 9.8 m/s^2) use the equation that connects change in velocity over time with acceleration.

a=\frac{Vf-Vi}{t}

-9.8 \frac{m}{s} =\frac{Vf-Vi}{t}

In our case, the initial velocity of the ball as it leaves the hands of the person is Vi = 20 m/s, while thw final velocity of the ball as it reaches its maximum height is zero (0) m/s. Therefore we can solve for the time it takes the ball to reach the top:

-9.8  =\frac{0-20}{t}\\t=\frac{20}{9.8} s = 2.04 s

Now we use this time in the expression for the distance covered (final position Xf minus initial position Xi) under acceleration:

Xf-Xi=Vi*t+\frac{1}{2} a t^{2} \\Xf-Xi=20*(2.04)-\frac{1}{2} 9.8*2.04^{2}\\Xf-Xi=20.408 m

Part b) Now we use the expression for distance covered under acceleration to find the time it takes for the ball to leave the person's hand and come back to it (notice that Xf-Xi in this case will be zero - same final and initial position)

Xf-Xi=0=20*(t)-\frac{1}{2} 9.8*t^{2

To solve for "t" in this quadratic equation, we can factor it out as shown:

0= t(20-\frac{9.8}{2} t)

Therefore there are two possible solutions when each of the two factors equals zero:

1) t= 0 (which is not representative of our case) , and

2) the expression in parenthesis is zero:

0= 20-\frac{9.8}{2} t\\t=\frac{20*2}{9.8} = 4.08 s

7 0
4 years ago
Other questions:
  • A vehicle moves in a straight line with an
    11·1 answer
  • A scientist in central Nebraska is studying factors that affect the formation of tornadoes. How might the scientist benefit from
    13·2 answers
  • A bicycle tire is spinning clockwise at 3.40 rad/s. During a time period Δt = 2.50 s, the tire is stopped and spun in the opposi
    14·2 answers
  • If you are driving 72 km/h along a straight road and you look to the side for 4.0 s, how far do you travel during this inattenti
    9·1 answer
  • In 1923, the United States Army (there was no U.S. Air Force at that time) set a record for in-flight refueling of airplanes. Us
    13·1 answer
  • A plane comes in for a landing at a velocity of 80 meters per second west. As it touches down, it decelerates at a constant rate
    8·1 answer
  • Does the following decrease or increase normal force? Pulling up on the object.
    7·2 answers
  • A+10 u charge and a -10 4C (1 HC - 106 C), at a distance of 0.3 m,
    15·1 answer
  • How to the eath turn
    7·2 answers
  • What is optics?<br><br> Need Proper explanation in your own words!!!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!