1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
6

Differentiate with respect to X

%7D%20" id="TexFormula1" title=" \sqrt{ \frac{cos2x}{1 +sin2x } } " alt=" \sqrt{ \frac{cos2x}{1 +sin2x } } " align="absmiddle" class="latex-formula">
​
Mathematics
1 answer:
Mice21 [21]3 years ago
5 0

Power and chain rule (where the power rule kicks in because \sqrt x=x^{1/2}):

\left(\sqrt{\dfrac{\cos(2x)}{1+\sin(2x)}}\right)'=\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'

Simplify the leading term as

\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}

Quotient rule:

\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'=\dfrac{(1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))'}{(1+\sin(2x))^2}

Chain rule:

(\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)

(1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)

Put everything together and simplify:

\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{(1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x))}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x)}{(1+\sin(2x))^2}

=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac{\sin(2x)+1}{(1+\sin(2x))^2}

=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac1{1+\sin(2x)}

=-\dfrac1{\sqrt{\cos(2x)}}\dfrac1{\sqrt{1+\sin(2x)}}

=\boxed{-\dfrac1{\sqrt{\cos(2x)(1+\sin(2x))}}}

You might be interested in
Convert the following into standard form <br><br> y = -x + 1/3
Doss [256]
       y = -x + 1/3 
    + x  + x
--------------------------
      x + y = 1/3

5 0
3 years ago
(x+4)^2+y^2=16 in polar form
Sonja [21]
I don’tknwoeidndhdndjnd
6 0
3 years ago
Line segment addition !!!!!! SOLVE FOR X !!!!!
serg [7]

Answer:

  • x = 11

Step-by-step explanation:

  • JM = JK + KL + LM

<u>Substitute the values and solve for x:</u>

  • 23 = 9 + 2x - 18 + x - 1
  • 23 = 3x - 10
  • 3x = 23 + 10
  • 3x = 33
  • x = 33/3
  • x = 11
3 0
3 years ago
Which expession is equivalent to -3(6c + 2) + 5c
sp2606 [1]

Answer:

-13c-6

Step-by-step explanation:

-3(6c + 2) + 5c

Distribute

-18c -6 +5c

Combine like terms

-13c-6

6 0
3 years ago
Read 2 more answers
Distance
Slav-nsk [51]

Answer: 28 km

Step-by-step explanation: For the first 25 minutes, he drove 60 km/h. Since there is 60 minutes in an hour, we know that he drove 25 km. The rest of the journey is 15 minutes. 15 minutes is 1/4 of an hour, so get 1/4 of 12 km/h. This would be 3 km. Add 25 km and 3 km. The distance between the 2 malls is 28 km.

5 0
4 years ago
Other questions:
  • Help with 21 and not 22 please
    9·1 answer
  • 15 decreased by twice a number x in algebriac expression
    15·1 answer
  • Which is an equation of a line with an x-intercept of -4 and a y-intercept of 3? A. Y= 3/4x-4 B. y=3/4x+3 C. Y=-3/4x-4 D. Y=-3/4
    14·1 answer
  • Please help! SHOW YOUR WORK.
    5·1 answer
  • 2<br> Multiple choice. How many solutions does the equation 6 + 1 = -6x+ 10 have?
    6·1 answer
  • I’m not sure how to do angle relationships, so what is angle cbd?
    8·1 answer
  • You buy a $60 watch and it has a discount of 15% whats the cost of the watch
    6·1 answer
  • Find the exact area of the surface obtained by rotating the curve about the y -axis. x=√a2−y2, 0≤y≤a/7
    14·1 answer
  • Please help me I will make brailest
    8·1 answer
  • Last question for Jim Thompson Geometry homework
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!