1. At constant tempaerature and pressure, 3 tablets produce 600cm^3 of gas
Thus calculating for 1 tablet that produces 600 / 3 = 200 cm^3
So now two tablets produce 200 x 2 = 400 cm^3
2. We have the equation PV = nRT, n being the number of moles
Pressure P = 1,000 kPa
Volume V = 3 L
R = 8.31 L kPa/mol-K
Temperature T = 298 K
n = PV / RT = (1000 x 3) / (8.31 x 298) = 3000 / 2476.38 = 1.21 moles
Number of moles = 1.21 moles.
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84

and replacing in the expression Q = m*L you get:
Q=172 g*84 
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
Answer:
785
Explanation:
Molecular. X. W
Weight
8000-16000 0.05 0.03
16000-24000. 0.017. 0.08
24000-32000. 0.22. 0.18
32000-40000. 0.25. 0.35
40000-48000. 0.22. 0.27
48000-56000. 0.09. 0.09
Mean weight X*M. W*M
12000. 600. 240
20000. 3200. 2000
28000. 6720. 5600
36000. 10080. 10800
44000. 8800. 11880
52000. 3640 3640
Total=33040g\mol 36240
Note before repeat molecular weight m= 3*12.01+6*1.008=
42.08g/mol
Degree of polymerization= total W*M/w=33040/42.08 =785
Answer:
2016.417222 hours
Explanation: you def made your goal
28800 seconds
<span>c. remains the same
</span>----------------------------------------------------
As electrical energy is converted into heat energy, the total amount in the system remains the same
--------------
according to law of conservation of energy