Answer:
Injections of aqueous solution of fruct
levulose of formula C, H, O,,
For
prevent dehydration such solutions are obtained
dissolving a mass m = 25g of fructose for a volume of 50
final solution.
1.1 Calculate the molecular molar mass of fructose
1.2 Determine the amount of corresponding fructose material
1.3 Calculate the molar concentration of these fructose solutions
1.4
<span>Plasma is a controllable reactive gas that is used to make small PATTERNS in silica which are used in computers and cell phones.</span>
A square loop whose sides are long is made of copper wire of radius , given the resistivity of copper is . if the magnetic field perpendicular to the loop changes at a constant rate of I = 14.029 mA.
The basic characteristic of a substance that measures how effectively it resists an electric current is called electrical resistance. A material with low resistance is a material that easily conducts electric current. A Greek letter is often used to indicate resistivity. Electrical resistance is a basic property of a material that measures how strongly it resists an electric current. The SI unit for electrical resistance is the ohmmeter.
We use magnetic field as a tool to describe how the magnetic field is distributed in the space around and inside something of a magnetic nature. A material with low resistance is a material that easily conducts electric current. A Greek letter is often used to indicate resistivity. An ohmmeter is a unit of electrical resistance in the SI system.
Learn more about magnetic field here;
brainly.com/question/24397546
#SPJ4
The complete question is :
A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?
Answer:
The rms voltage (in V) measured across the secondary coil is 459.62 V
Explanation:
Given;
number of turns in the primary coil, Np = 375 turns
number of turns in the secondary coil, Ns = 1875 turns
peak voltage across the primary coil, Ep = 130 V
peak voltage across the secondary coil, Es = ?

The rms voltage (in V) measured across the secondary coil is calculated as;

Therefore, the rms voltage (in V) measured across the secondary coil is 459.62 V
Answer:
110 m/s
Explanation:
because if you subtract 450 from 340 you get 110