The noble gas configuration system helps to shorten the total electron configuration by using the symbol for the noble gas that lies before the particular element in the periodic table.
For example:
Na has atomic number 11
Electron configuration of Na: 1s2 2s2 2p6 3s1
Noble gas electron configuration of Na: [Ne] 3s1
Ne has atomic number 10 and lies before Na in the periodic table.
Answer:
The concentration of
is 1.48 ×
M
The absolute uncertainty of
is ±0.12 ×
M
The concentration of
is written as 1.48(±0.12) ×
M
Explanation:
The pH of a solution is given by the formula below
pH = ![-log_{10}[{H^{+}]](https://tex.z-dn.net/?f=-log_%7B10%7D%5B%7BH%5E%7B%2B%7D%5D)
∴ ![[H^{+}] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D)
where
is the
concentration
From the question,
pH = 8.83±0.04
That is,
pH =8.83 and the uncertainty is ±0.04
First, we will determine
from
![[H^{+}] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D)
![[{H^{+}] = 10^{-8.83}](https://tex.z-dn.net/?f=%5B%7BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-8.83%7D)
×
M
×
M
The concentration of
is 1.48 ×
M
The uncertainty of
(
) from the equation
is
×
× 
Where
is the uncertainty of
is the uncertainty of the pH
Hence,
= 2.303 × 1.4791 ×
× 0.04
= 1.36 ×
M
= 0.12 ×
M
Hence, the absolute uncertainty of
is ±0.12 ×
M
KCl2 (potassium dichloride) ?I’m not completely sure
13. C
14. 64 / 98 x 300 = 195.91 your answer is "B"