Answer is: <span>D. Tin atoms give electrons to lead(II) ions and are oxidized to tin(II) ions.
Chemical reaction: Sn</span>⁰ + Pb²⁺ → Sn²⁺ + Pb.
Tin atom (oxidation number 0) give two electrons to led ions, oxidation number of tin is greater now (oxidation number +2).
<span>Oxidation is loss of electrons.</span>
I believe that's is answer C because your ask about and increasment on the velocity in this observation
Answer:
There is a mass of 154 Grams of Carbon Dioxide.
Explanation:
One mole is equal to 6.02 × 10^23 particles.
This means we have 1.05 X 10^24 total particles of Ethane.
Each ethane particle contains 2 carbon atoms.
If every particle of ethane is burned, we will end up with 2.10 x 10^24 molecules of Carbon Dioxide (Particles of Methane x 2, since each Methane particle contains 2 carbon atoms)
Carbon Dioxide has a molar mass of 44.01 g/mol
So if we take our amount of Carbon Dioxide molecules and divide it by 1 mole, ((2.10 x 10^24)/(6.02 x 10^23) = 3.49) we find that we have 3.49 moles of Carbon Dioxide.
Now all we need to do is multiply our moles of carbon dioxide(3.49) by it's molar mass(44.01) while accounting for significant digits.
What you should end up with is 154 Grams of Carbon Dioxide.
Hope this helps (And more importantly I hope I didn't make any errors in my math lol)
As a side note this is all assuming that this takes place at STP conditions.
Answer:
<h3>

</h3>
Explanation:
▪️
⇒The composition , decomposition or displacement of molecules of matter during chemical change is called chemical reaction.
▪️
Various conditions bring about these changes. The chemical reactions are represented by chemicalequation. The compounds or elements that take part in chemical reaction are called reactant. They are written at the left side of an arrow that represent a change while the compound or elements that formed after the chemical change are called product. They are written at the right side of the arrow.
▪️
When nitrogen reacts with hydrogen to form ammonia :
Nitrogen + Hydrogen ⇒ Ammonia
N₂ + 3H₂ ⇒ 2NH₃
<u>Presentation </u><u>of </u><u>a </u><u>chemical </u><u>reaction </u><u>in </u><u>the </u><u>form </u><u>of </u><u>equation </u><u>is </u><u>called </u><u>chemical </u><u>equation </u>. <u>Chemical equation may be word equations or formula equations.</u>
Hope I helped!
Best regards!!