In a titration process, the unknown or the analyte with a known volume is placed in a flask and the titrant whose concentration is known is placed in the burette. The indicator in the titration process is generally added to the flask with the analyte.
Answer:
The manufacturing processes for liquefied petroleum gas are designed so that the majority, if not all, of the sulfur compounds are removed. The total sulfur level is therefore considerably lower than for other crude oil-based fuels and a maximum limit for sulfur content helps to define the product more completely. The sulfur compounds that are mainly responsible for corrosion are hydrogen sulfide, carbonyl sulfide and, sometimes, elemental sulfur. Hydrogen sulfide and mercaptans have distinctive unpleasant odors. A control of the total sulfur content, hydrogen sulfide and mercaptans ensures that the product is not corrosive or nauseating. Stipulating a satisfactory copper strip test further ensures the control of the corrosion.
Answer:
55.75g
Explanation:
From
m/M = CV
Where
m= required mass of solute
M= molar mass of solute
C= concentration of solution
V= volume of solution=675ml
Molar mass of solute= 3(23) + 31 + 4(16)= 69+31+64=164gmol-1
Number of moles of sodium ions present= 1.5× 675/1000= 1.01 moles
Since 1 mole of Na3PO4 contains 3 moles of Na+
It implies that 1.01/3 moles of Na3PO4 are present in solution= 0.34moles
mass of Na3PO4= number of moles × molar mass= 0.34 × 164 =55.75g
Answer:
The Gulf Stream is influential on the climate of the Florida peninsula.East winds moving over this warm water move warm air from over the Gulf Stream inland, helping to keep temperatures milder across the state than elsewhere across the Southeastern United States during the winter.
Explanation:
hope this helps!
0.20 moles of iron will be formed in the reaction.
Explanation:
The balanced chemical equation for the reaction between iron (iii) oxide and carbon monoxide to form Fe is to be known first.
the balanced reaction is :
Fe2O3 + 3CO⇒ 2 Fe + 3 CO2
so from the data given the number of moles of carbon monoxide can be known:
3 moles of CO reacted with Fe2O3 to form 2 moles of iron in the reaction.
Number of moles of CO is 6.20 moles
11.6 gm of iron is formed
so the number of moles of iron formed is calculated as
n = mass of iron ÷ atomic weight of iron
= 11.6 ÷ 55.84
= 0.20 moles of iron will be formed when 11.6 gram of iron is produced.