Answer:
Increases
Explanation:
Because acceleration goes higher
It's one of your hands. Which one it is depends on how you sweep.
-- If you hold the top of the stick motionless and wave your bottom hand
back and forth, then your top hand is the fulcrum, and you're using the
broom as a Class-3 lever.
-- If you hold your bottom hand motionless and wiggle the top end of the
broom back and forth with your top hand, then your lower hand is the fulcrum,
and you're using the broom as a Class-1 lever.
Answer:
Option C) 2,090 J/(mol K)
Explanation:
Data:
Volume in the beaker = 429 ml
temperature = 20° C
Density = 789 kg/m³
Equilibrium reading = 429
volume change = 29 ml
= 0.029 L
Energy change = mcΔT
U + PΔV
Answer:

Explanation:
The intensity of an electromagnetic wave can be expressed in terms of the magnetic field using the next relationship:
(1)
- c is the speed of light (3*10⁸ m/s)
- μ₀ is the permeability of free space (in vacuum ) (1.26*10⁻⁶ N/A²)
- B₀ is the magnetic field


Now, let's define the relationship between power (P) and average intensity (I).

- P is the power
- A is the area crossed
So we can calculate the power.

Finally, energy is the product of P times time, so:

I hope it helps you!
Option B is the correct answer that show how magnetic field lines should be drawn for the magnets shown in the figure.
<h3>
What is Magnetic Line of Force ?</h3>
The Magnetic Line of Force of a magnet is defined as the line along which a free N - pole would tend to move if placed in the field of a line such that the tangent to it at any point gives the direction of the field at that point.
When the two unlike poles are placed to each other, there will be attraction. And when the two like poles are placed to each other, there will be repulsion. The reason is that the line of force tend to move from the north pole to the south pole.
From the given diagram, the two magnets are of the same south pole. They are of like pole and there will be repulsion between the two magnets.
Therefore, Option B is the correct answer that show how magnetic field lines should be drawn for the magnets shown in the figure.
Learn more about Magnetic Field Lines here: brainly.com/question/17011493
#SPJ1