<h3><u>Answer</u>;</h3>
$347.22
<h3><u>Explanation</u>;</h3>
Principal = $14,200
Rate = 8.5%
Time = 105 days = 105/365
Interest = Principal x Rate x Time
Interest = 14,200 x 0.085 x 105/365
Interest = 347.219
= $347.22
Answer:
The desire to continue with your exercise would be the correct answer! :D
Answer:
Answered
Explanation:
A) The work done by gravity is zero because displacement and the gravitational force are perpendicular to each other.
W= FS cosθ
θ= 90 ⇒cos90 = 0 ⇒W= 0
B) work done by tension
W= Tcosθ×S= 5cos30×2.30= 10J
C) Work done by friction force
W= f×s=1×2.30= 2.30 J
D) Work done by normal force is Zero because the displacement and the normal force are perpendicular to each other.
E) The net work done= Work done by tension in the rope - frictional work
=10-2.30= 7.7 J
First, determine the mass of the object by dividing its weight on Earth by 9.8 m/s² as shown below,
m = 250 N / 9.8 m/s² = 25.51 kg
Then, multiply the obtained mass by the acceleration due to gravity (g) on Pluto.
W (in Pluto) = (25.51 kg) x (0.61 m/s²) = 15.56 N
Therefore, the object will only weigh 15.56 N.
We may be positive that an object is in mechanical equilibrium if it is not rotating and experiences no acceleration.
<h3>What is
mechanical equilibrium?</h3>
There are numerous other definitions for mechanical equilibrium that are all mathematically comparable in addition to the definition in terms of force. A system is in equilibrium in terms of momentum if the component motions are all constant. If velocity is constant, the system is in equilibrium in terms of velocity. When an item is in a state of rotational mechanical equilibrium, its angular momentum is preserved and its net torque is zero. More generally, equilibrium is reached in conservative systems at a configuration space location where the gradient of the potential energy concerning the generalized coordinates is zero.
To learn more about mechanical equilibrium, visit:
<u>brainly.com/question/14246949</u>
#SPJ4