Explanation:
Given that,
Angle by the normal to the slip α= 60°
Angle by the slip direction with the tensile axis β= 35°
Shear stress = 6.2 MPa
Applied stress = 12 MPa
We need to calculate the shear stress applied at the slip plane
Using formula of shear stress

Put the value into the formula


Since, the shear stress applied at the slip plane is less than the critical resolved shear stress
So, The crystal will not yield.
Now, We need to calculate the applied stress necessary for the crystal to yield
Using formula of stress

Put the value into the formula


Hence, This is the required solution.
If you could please give me a already given speed I could estimate it. since there is no speed shown you wouldn't be able to estimate the speed of the moving train.
It is callled do it your self you you you
By copying their genomes, they retain the tool kit and at the same time generate a garage full of spare parts. Gene duplication can provide the raw material for expression changes to occur, and polyploidy itself can trigger epigenetic changes
Answer:
(a) θ = 33.86°
(b) Ay = 49.92 N
Explanation:
You have that the magnitude of a vector is A = 89.6 N
The x component of such a vector is Ax = 74.4 N
(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:
(1)
Ax: x component of vector A
A: magnitude of vector A
θ: angle between vector A and the x axis
You solve the equation (1) for θ, by using the inverse of cosine function:

the angle between the A vector and the x axis is 33.86°
(b) The y component of the vector is given by:

the y comonent of the vecor is Ay = 49.92 N