The answer is C.
You need you use Pythagoras theorem 2 times to have 2 equations with the same sides i.e. for example a2 + b2 = 81 and a2 - b2 = 9.
You can do it as you have different triangles but with the same sides.
Answer:
A
Step-by-step explanation:
Because this ia so simple I don't even need to explain to waste my last few brain cells.

![\begin{gathered} \\ \\ \quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + 4 \div 2 \bigg] \div \bigg[8 \div \bigg( - 8 \bigg) + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5C%5C%20%20%5C%5C%20%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%204%20%5Cdiv%202%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B8%20%5Cdiv%20%20%5Cbigg%28%20-%208%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
According to the "BODMAS rule" firstly performing "division".
![\begin{gathered} \\ \\ \quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + \dfrac{4}{2} \bigg] \div \bigg[ \dfrac{8}{ - 8} + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5C%5C%20%20%5C%5C%20%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%20%5Cdfrac%7B4%7D%7B2%7D%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20%5Cdfrac%7B8%7D%7B%20-%208%7D%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
![\begin{gathered}\quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + \cancel{\dfrac{4}{2}} \bigg] \div \bigg[ \: \cancel{\dfrac{8}{ - 8}} + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%20%20%5Ccancel%7B%5Cdfrac%7B4%7D%7B2%7D%7D%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20%5C%3A%20%5Ccancel%7B%5Cdfrac%7B8%7D%7B%20-%208%7D%7D%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
![\begin{gathered}\quad\dashrightarrow{\sf \bigg[ \bigg( - 17 \bigg) + 2 \bigg] \div \bigg[ - 1 + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%5Cbigg%28%20-%2017%20%5Cbigg%29%20%2B%20%202%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20-%201%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
Now, performing "addition and opening round brackets".
![\begin{gathered} \\ \\\quad\dashrightarrow{\sf \bigg[ - 17 + 2 \bigg] \div \bigg[ - 1 + 4 \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5C%5C%20%20%5C%5C%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20-%2017%20%2B%20%202%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20-%201%20%2B%204%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
![\begin{gathered}\quad\dashrightarrow{\sf \bigg[ \: - 15 \: \: \bigg] \div \bigg[ \: \: 3\: \: \bigg]} \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Cquad%5Cdashrightarrow%7B%5Csf%20%5Cbigg%5B%20%20%5C%3A%20%20-%2015%20%5C%3A%20%20%5C%3A%20%5Cbigg%5D%20%5Cdiv%20%5Cbigg%5B%20%20%5C%3A%20%20%5C%3A%20%203%5C%3A%20%20%5C%3A%20%5Cbigg%5D%7D%20%20%5C%5C%20%20%5C%5C%20%5Cend%7Bgathered%7D)
Now, opening "square brackets".

Now, "dividing 15 by 3".




∴ The Answer is -5.



<u>BODMAS</u> rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.
It stands for :-
- ↠ B - Brackets,
- ↠ O - Order of powers or roots,
- ↠ D - Division,
- ↠ M - Multiplication
- ↠ A - Addition,
- ↠ S - Subtraction.
It means that expressions having multiple operators need to be simplified from left to right in this order only.


First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.
- ↠ Addition (+)
- ↠ Subtraction (-)
- ↠ Multiplication (×)
- ↠ Division (÷)
- ↠ Brackets ( )
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Answer:
0 ≤ g(x) < ∞
Step-by-step explanation:
The range is all non-negative numbers.
___
g(x) is an even-degree polynomial with a positive leading coefficient, so it opens upward. There is no added constant, so its minimum value is zero. The function can take on all values zero or greater.
range: [0, ∞)