1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
3 years ago
13

An L-R-C series circuit has L = 0.450 H, C=2.50×10^−5F, and resistance R.

Physics
1 answer:
Alex777 [14]3 years ago
6 0

Answer:

298rad/s and 116.96 ohms

Explanation:

Given an L-R-C series circuit where

L = 0.450 H,

C=2.50×10^−5F, and resistance R= 0

In this situation we have a simple LC circuit with angular frequency

Wo = 1√LC

= 1/√(0.450)(2.50×10^-5)

= 1/√0.00001125

= 1/0.003354

= 298rad/s

B) Now we need to find the value of R such that it gives a 10% decrease in angular frequency.

Wi/W° = (100-10)/100

Wi/W° = 90/100

Wi/W° = 0.90 ............... 1

Angular frequency of oscillation

The complete aspect of the solution is attached, please check.

You might be interested in
A 72.8-kg swimmer is standing on a stationary 265-kg floating raft. The swimmer then runs off the raft horizontally with a veloc
nalin [4]

Answer:

-1.43 m/s relative to the shore

Explanation:

Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:

m_sv_s + m_rv_r = 0

where m_s = 72.8, m_r = 265 are the mass of the swimmer and raft, respectively. v_s = 5.21 m/s, v_r are the velocities of the swimmer and the raft after the run, respectively. We can solve for v_r

265v_r + 72.8*5.21 = 0

v_b = -72.8*5.21/265 = -1.43 m/s

So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore

7 0
3 years ago
Is it proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinde
Gelneren [198K]

Answer:

No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.

Explanation:

A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.

Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:

* When the diameter and length are comparable (i.e have the same measurement)

When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.

Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.

8 0
3 years ago
Write a collision scenario here. If you choose your own collision, you can have neither, one, or both of the objects break. Be s
OleMash [197]

Answer:

My scenario would be A Car vs. a guard rail on a road.  You have a car that is coming down a Highway at a speed of 43 Mph Miles per hour (69.2018 Kmh)

And it hits a steel guardrail and the car smashes in at the front and the guardrail is only bent while the car has the bumper and the hood along with the headlights and windshield along with the passenger side window break.

Explanation:

This is caused by so much force reacting from one object to another but also depends on molecular density.

5 0
2 years ago
A baseball hits a car, breaking its window and triggering its alarm which sounds at a frequency of 1210 Hz. What frequency (in H
IRINA_888 [86]

Answer:

The frequency of sound heard by the boy is 1181 Hz.

Explanation:

Given that,

Frequency of sound from alarm  f_{0} = 1210\ Hz

Speed = -8.25 m/s

Negative sign show the boy riding away from the car

Speed of sound = 343

We need to calculate the heard frequency

Using formula of frequency

f = f_{0}(\dfrac{v+v_{0}}{v-v_{s}})

Where, f_{0} = frequency of source

v_{0} = speed of observer

v_{s} = speed of source

v = speed of sound

Put the value into the formula

f=1210\times\dfrac{343+(-8.25)}{343-0}

here, source is at rest

f=1180.8\ Hz

f=1181\ Hz

Hence, The frequency of sound heard by the boy is 1181 Hz.

8 0
3 years ago
Sam receives the kicked football on the 3 yd line and runs straight ahead toward the goal line before cutting to the right at th
Pie

Answer:

Distance: 21 yd, displacement: 15 yd, gain in the play: 12 yd

Explanation:

The distance travelled by Sam is just the sum of the length of each part of Sam's motion, regardless of the direction. Initially, Sam run from the 3 yd line to the 15 yd line, so (15-3)=12 yd. Then, he run also 9 yd to the right. Therefore, the total distance is

d = 12 + 9 = 21 yd

The displacement instead is a vector connecting the starting point with the final point of the motion. Sam run first 12 yd straight ahead and then 9 yd to the right; these two motions are perpendicular to each other, so we can find the displacement simply by using Pythagorean's theorem:

d=\sqrt{12^2+9^2}=15 yd

Finally, the yards gained by Sam in the play are simply given by the distance covered along the forward-backward direction only. Since Sam only run from the 3 yd line to the 15 yd line along this direction, then the gain in this play was

d = 15 - 3 = 12 yd

7 0
3 years ago
Other questions:
  • The chemical elements are arranged in order of increasing atomic number. The rows are called periods and the columns are called
    12·1 answer
  • A 1700kg rhino charges at a speed of 50.0km/h. what is the magnitude of the average force needed to bring the rhino to a stop in
    13·2 answers
  • Two cars are facing each other from opposite ends of a 500m long road. Car A begins travelling at a constant speed of 20m/s. At
    11·1 answer
  • Development is best described as:
    7·1 answer
  • Lc circuit consists of a 20.0 mh inductor and a 0.150 µf capacitor. if the maximum instantaneous current is 0.400 a, what is the
    14·1 answer
  • A 25.2 kg gazelle moving 2.33 m/s
    8·1 answer
  • A projectile is launched from ground level at angle u and speed v0 into a headwind that causes a constant horizontal acceleratio
    12·1 answer
  • NEED HELP NOW DUE TODAY Which of these statements is most likely correct about Newton's law on gravity? (2 points)
    9·1 answer
  • Which statement explains how convection currents affect the movement of plates?Explain the main conflict between a character and
    6·2 answers
  • Es muy común que cuando se viaja hacia un río o lago se juegue “ranita”, el cual consiste en lanzar una piedra horizontalmente h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!