1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GrogVix [38]
3 years ago
10

Two identical stars with mass M orbit around their center of mass. Each orbit is circular and has radius

Physics
1 answer:
kondaur [170]3 years ago
4 0

Answers: (A)F=G\frac{M^2}{4R^2} (B) V=\sqrt{\frac{GM}{4R}} (C)T=4\pi R\sqrt{\frac{R}{GM}} (D)

E=-\frac{GM^{2}}{4R}

Explanation:

<h2>(A) Gravitational force of one star on the other</h2>

According to the law of universal gravitation:

F=G\frac{m_{1}m_{2}}{r^2}   (1)

Where:

F is the module of the gravitational force exerted between both bodies  

G is the universal gravitation constant.

m_{1} and m_{2} are the masses of both bodies.

r is the distance between both bodies

In the case of this binary system with two stars with the same mass M and separated each other by a distance 2R, the gravitational force is:

F=G\frac{(M)(M)}{(2R)^2}   (2)

F=G\frac{M^2}{4R^2}   (3) This is the gravitational force between the two stars.

<h2>(B) Orbital speed of each star</h2>

Taking into account both stars describe a circular orbit and the fact this is a symmetrical system, the orbital speed V of each star is the same. In addition, if we assume this system is in equilibrium, <u>gravitational force must be equal to the centripetal force</u>  F_{C} (remembering we are talking about a circular orbit):

So: F=F_{C}   (4)

Where F_{C}=Ma_{C}  (5) Being a_{C} the centripetal acceleration

On the other hand, we know there is a relation between a_{C} and the velocity V:

a_{C}=\frac{V^{2}}{R}  (6)

Substituting (6) in (5):

F_{C}=M\frac{V^{2}}{R} (7)

Substituting (3) and (7) in (4):

G\frac{M^2}{4R^2}=M\frac{V^{2}}{R}   (8)

Finding V:

V=\sqrt{\frac{GM}{4R}} (9) This is the orbital speed of each star

<h2>(C) Period of the orbit of each star</h2><h2 />

The period T of each star is given by:

T=\frac{2\pi R}{V}  (10)

Substituting (9) in (10):

T=\frac{2\pi R}{\sqrt{\frac{GM}{4R}}}  (11)

Solving and simplifying:

T=4\pi R\sqrt{\frac{R}{GM}}  (12) This is the orbital period of each star.

<h2>(D) Energy required to separate the two stars to infinity</h2>

The gravitational potential energy U_{g} is given by:

U_{g}=-\frac{Gm_{1}m_{2}}{r}  (13)

Taking into account this energy is always negative, which means the maximum value it can take is 0 (this happens when the masses are infinitely far away); the variation in the potential energy \Delta U_{g} for this case is:

\Delta U_{g}=U-U_{\infty} (14)

Knowing U_{\infty}=0 the total potential energy is U and in the case of this binary system is:

U=-\frac{G(M)(M)}{2R}=-\frac{GM^{2}}{2R}  (15)

Now, we already have the <u>potential energy</u>, but we need to know the kinetic energy K in order to obtain the total <u>Mechanical Energy</u> E required to separate the two stars to infinity.

In this sense:

E=U+K (16)

Where the kinetic energy of both stars is:

K=\frac{1}{2}MV^{2}+\frac{1}{2}MV^{2}=MV^{2} (17)

Substituting the value of V found in (9):

K=M(\sqrt{\frac{GM}{4R}})^{2} (17)

K=\frac{1}{4}\frac{GM^{2}}{R} (18)

Substituting (15) and (18) in (16):

E=-\frac{GM^{2}}{2R}+\frac{1}{4}\frac{GM^{2}}{R} (19)

E=-\frac{GM^{2}}{4R} (20) This is the energy required to separate the two stars to infinity.

You might be interested in
A 0.547 kg pizza is thrown straight up in the air. At a height of 2.30 m above the surface of the earth it has a speed of 5.00 m
natima [27]

Answer:

The total mechanical energy of the pizza crust is 19.2 J.

Explanation:

Mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a certain mass and in a position of rest, until it reaches a certain speed.

Kinetic energy is represented by the following formula:

Ec = ½ *m*v²

Where Ec is kinetic energy, which is measured in Joules (J), m is mass measured in kilograms (kg), and v is velocity measured in meters over seconds (m / s).

In this case:

  • m=0.547 kg
  • v= 5 m/s

Replacing:

Ec = ½ *0.547 kg*(5 m/s)²

and solving you get:

Ec= 6.8375 J

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity. Then for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep = m*g*h

Where Ep is the potential energy in joules (J), m is the mass in kilograms (kg) is h the height in meters (m) and g is the acceleration of fall in m / s² (approximately 9.81 m/s²)

In this case:

  • m= 0.547 kg
  • g= 9.81 m/s²
  • h= 2.30 m

Replacing

Ep= 0.547 kg *9.81 m/s²* 2.30 m

and solving you get:

Ep= 12.342 J

So:

Total mechanical energy= 12.342 J + 6.8375 J

Total mechanical energy= 19.1795 J≅ 19.2 J

<u><em>The total mechanical energy of the pizza crust is 19.2 J.</em></u>

6 0
3 years ago
The scientist who suggested that energy can be created under certain conditions was
tester [92]
Einstein hope this helped
7 0
4 years ago
Read 2 more answers
Objects A and B are separated by 2m and the force of attraction between them is 8 x 10^-10 N . If the mass of A is 8kg what is t
Jobisdone [24]

Answer:

Only object a and b???????

5 0
3 years ago
two people, each with a mass of 70 kg, are wearing inline skates and are holding opposite ends of a 15m rope. One person pulls f
Zina [86]

Answer:

7.75 s

Explanation:

Newton's second law:

∑F = ma

35 N = (70 kg) a

a = 0.5 m/s²

Given v₀ = 0 m/s and Δx = 15 m:

Δx = v₀ t + ½ at²

(15 m) = (0 m/s) t + ½ (0.5 m/s²) t²

t = 7.75 s

5 0
3 years ago
This energy source uses hydrogen and oxygen to produce water. It produces almost no pollution, and it works similarly to a batte
Karolina [17]
The answer is fuel cell....

8 0
4 years ago
Other questions:
  • List and define three types of intermolecular forces and identify which types of molecules each forces affects.
    8·1 answer
  • A 100. N block sits on a rough horizontal floor. The coefficient of sliding friction between the block and the floor is 0.250. A
    9·1 answer
  • A student performed an experiment with a metal sphere. The student shot the sphere from a slingshot and measured its maximum hei
    13·1 answer
  • A ball is thrown up with a speed of 15m/s. How high will it go before it begins to fall? ( g = 10m/s2 )
    7·1 answer
  • A circular track has an inside cirumference of 220m. If the width of track is 3.5m, find its outer circumference.​
    9·1 answer
  • Please help me i’ll mark u branliest !!
    8·1 answer
  • What is the magnitude of the resultant of a 7.0-N force acting vertically upward and a 5.0-N force acting horizontally.
    8·1 answer
  • In how much time will the voyagar I and II comelete the rotation of milky way galaxy?​
    12·2 answers
  • A small car is pushing a large truck. They are speeding up.
    8·1 answer
  • A skier stands at the top of a 50 meter slope. He then skis down the slope. What is his approximate speed at the bottom of the s
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!