Explanation:
Given that,
The initial velocity of a skater is, u = 5 m/s
She slows to a velocity of 2 m/s over a distance of 20 m.
We can find the acceleration of skater. It is equal to the rate of change of velocity. So, it can be calculated using third equation of motion as follows :

a = acceleration

So, her acceleration is
and she is deaccelerating. Also, her initial velocity is given i.e. 5 m/s.
Answer:
a)
= 928 J
, b)U = -62.7 J
, c) K = 0
, d) Y = 11.0367 m, e) v = 15.23 m / s
Explanation:
To solve this exercise we will use the concepts of mechanical energy.
a) The elastic potential energy is
= ½ k x²
= ½ 2900 0.80²
= 928 J
b) place the origin at the point of the uncompressed spring, the spider's potential energy
U = m h and
U = 8 9.8 (-0.80)
U = -62.7 J
c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also
K = ½ m v²
K = 0
d) write the energy at two points, maximum compression and maximum height
Em₀ = ke = ½ m x²
= mg y
Emo = 
½ k x² = m g y
y = ½ k x² / m g
y = ½ 2900 0.8² / (8 9.8)
y = 11.8367 m
As zero was placed for the spring without stretching the height from that reference is
Y = y- 0.80
Y = 11.8367 -0.80
Y = 11.0367 m
Bonus
Energy for maximum compression and uncompressed spring
Emo = ½ k x² = 928 J
= ½ m v²
Emo =
Emo = ½ m v²
v =√ 2Emo / m
v = √ (2 928/8)
v = 15.23 m / s
Answer:
See below
Explanation:
<u>I will use 3 x 10^8 m/s for speed or wave</u>
speed = wavelength * frequency
3 x 10^8 = w * 7.34 x 10^2 <====== are you sure this isn't KILO Hz ?
w = <u>408719. 3 meters </u>
Answer:
5.740 m
Explanation:
PE = mgh
900.0 J = (16.00 kg) (9.8 m/s²) h
h = 5.740 m
Static friction is what you are looking for.
Kinetic friction is the force exerted on an already moving object, slowing it down.