Answer:
Radius, r = 0.00523 meters
Explanation:
It is given that,
Magnetic field, 
Current in the toroid, I = 9.6 A
Number of turns, N = 6
We need to find the radius of the toroid. The magnetic field at the center of the toroid is given by :

r = 0.00523 m
or

So, the radius of the toroid is 0.00523 meters. Hence, this is the required solution.
Compared to the pucks given, the pair of pucks will rotate at the same rate.
Answer: Option A
<u>Explanation:</u>
The law of conservation of the angular momentum expresses that when no outer torque follows upon an article, no difference in angular momentum will happen. At the point when an item is turning in a shut framework and no outside torques are applied to it, it will have no change in angular momentum.
The conservation of the angular momentum clarifies the angular quickening of an ice skater as she brings her arms and legs near the vertical rotate of revolution. In the event, that the net torque is zero, at that point angular momentum is steady or saved.
By twice the mass yet keeping the speeds unaltered, also twice the angular momentum's to the two-puck framework. Be that as it may, we likewise double the moment of inertia. Since
, the turning rate of the two-puck framework must stay unaltered.
Answer:
F = 50636.873 N
Explanation:
given,
bucket of water = 700-kg
length of cable = 20 m
Speed = 40 m/s
angle of the cable = 38.0°
let air resistance be = F
tension in rope be = T
T cos 38° = m×g..................(1)
..........(2)
equation (1)/(2)


F = 50636.873 N
Hence the force exerted on the bucket is equal to F = 50636.873 N
Answer:
Explanation:
Given
mass of wheel m=13 kg
radius of wheel=1.8 m
N=469 rev/min

t=16 s
Angular deceleration in 16 s


Moment of Inertia 
Change in kinetic energy =Work done
Change in kinetic Energy

(a)Work done =50.79 kJ
(b)Average Power
