KE=1/2*m*v^2
So 480=1/2 * m * 8^2
480=1/2 * m * 64
480=32 * m
480/32=m
15=m
Answer:
1.53 s
Explanation:
Initially vertical component of velocity of the ball, uy = 7.5 m/s
Net displacement is vertical direction is zero, Δy =0
Use second equation of motion:
Δy = uy t + 0.5 a t²
Here, acceleration a = -g (g =9.8 m/s²)
Substitute all the values and solve for g
0 = 7.5 t -0.5 (9.8)t²
7.5 t = 4.9 t²
t = 1.53 s
The calculation of the centripetal acceleration of an object following a circular path is based on the equation,
a = v² / r
where a is the acceleration, v is the velocity, and r is the radius.
Substituting the known values from the given above,
4.4 m/s² = (15 m/s)² / r
The value of r from the equation is 51.14 m.
Answer: 51.14 m
Answer:
It either goes WEEEEEEE. Or it just breaks apart.
Explanation:
Answer: f = 927.55Hz
Explanation: Since the the tube is open-closed, the length of air and the wavelength of sound passing through the tube is given below
L = λ/4 where λ = wavelength.
speed of sound in air = v = 343m/s.
fundamental frequency of open closed tube = 315Hz
λ = 4L.
v = fλ
343 = 315 * 4L
343 = 1260 * L
L = 343/ 1260
L = 0.27m
In the same tube of length L = 0.27m but different medium ( helium), the speed of sound is 1010m/s.
The length of tube and wavelength are related by the formulae below
L = λ/4, λ=4L
λ = 4 * 0.27
λ = 1.087m.
v = fλ
1010 = f * 1.087
f = 1010/1.807
f = 927.55Hz