Answer:
112.569 ( D )
Step-by-step explanation:
Applying the estimated Regression Equation
y = b1X1 + b2X2 + a
b1 = ((SPX1Y)*(SSX2)-(SPX1X2)*(SPX2Y)) / ((SSX1)*(SSX2)-(SPX1X2)*(SPX1X2)) = 596494.5/635355.88 = 0.93884
b2 = ((SPX2Y)*(SSX1)-(SPX1X2)*(SPX1Y)) / ((SSX1)*(SSX2)-(SPX1X2)*(SPX1X2)) = 196481.5/635355.88 = 0.30925
a = MY - b1MX1 - b2MX2 = 149.25 - (0.94*61.31) - (0.31*193.88) = 31.73252
y = 0.939X1 + 0.309X2 + 31.733
For x1 ( age ) =39, and x2(weight) =143
y = (0.93884*39) + (0.30925*143) + 31.73252= 112.569
where
Sum of X1 = 981
Sum of X2 = 3102
Sum of Y = 2388
Mean X1 = 61.3125
Mean X2 = 193.875
Mean Y = 149.25
attached is the Tabular calculation of the required values needed for estimated regression equation
Answer:
a
Step-by-step explanation:
Answer:
165°
Step-by-step explanation:
Find the interior angle measure by using the formula, ((n - 2) x 180°) / n
Plug in 24 as n:
((n - 2) x 180°) / n
((24 - 2) x 180°) / 24
(22 x 180°) / 24
3960 / 24
= 165
So, the measure of each angle is 165°
Answer:
The value of Mary's investment after two years = £12362.7
Step-by-step explanation:P = Principal / initial amountR = rate of interest per cent per yearT = number of yearsA = final amount at the end of T yearsThen:A = P*(1 + R/100)^2In our example:P = £12000R = 1.5 per cent per yearT = 2 yearsThus:A = 12000*(1 + 1.5/100)^2 = 12000*(1 + 0.015)^2 = 12000*(1.015)^2 = 12000*(1.030225) = 12362.7Value of investment after two years = £12362.7