See picture for solution steps and answer.
Answer:
Down below
Step-by-step explanation:
a. The range of y = sinθ is [-1,1]
b. The period of y = cosθ is 2π
c. The asymptotes of y = tanθ are -π2, π2, πn
d. The amplitude of y = sinθ is 1
e. The period of y = tanθ is π
f. The max value of y = cosθ is 1
Step-by-step explanation:
∫₀³⁰ (r/V C₀ e^(-rt/V)) dt
If u = -rt/V, then du = -r/V dt.
∫ -C₀ e^u du
-C₀ ∫ e^u du
-C₀ e^u + C
-C₀ e^(-rt/V) + C
Evaluate between t=0 and t=30.
-C₀ e^(-30r/V) − -C₀ e^(-0r/V)
-C₀ e^(-30r/V) + C₀
C₀ (-e^(-30r/V) + 1)
I got the same answer. Try changing the lowercase v to an uppercase V.