The given pair of lines are not perpendicular.
<h3>What is a line?</h3>
The line is a curve showing the shortest distance between 2 points.
5x - 5y = -2 - - - - - (1)
Transform the equation into standard form,
5x + 2 = 5y
y = 5x /5 + 2/5
y = x + 2/5
The slope of equation 1 is
and intercept c = 2 / 5
Similarly
x + 2y = 4 - - - - - - - -(2)
Transform it into standard form
y = -x/2 + 4 /2
y = -x / 2 + 2
Slope of the equation 2
= -1 / 2 and intercept c = 2
Slope of line 1 * slope of line 2 = 1 * -1/2 = -1/2
Since the lines are not perpendicular because the pair of lines does not satisfy the property of perpendicular lines i.e

Thus, the given pair of lines are not perpendicular.
Learn more about lines here:
brainly.com/question/2696693
#SPJ1
I think it’s-10. Hope it’s right.
Answer:
Below.
Step-by-step explanation:
f) (a + b)^3 - 4(a + b)^2
The (a+ b)^2 can be taken out to give:
= (a + b)^2(a + b - 4)
= (a + b)(a + b)(a + b - 4).
g) 3x(x - y) - 6(-x + y)
= 3x( x - y) + 6(x - y)
= (3x + 6)(x - y)
= 3(x + 2)(x - y).
h) (6a - 5b)(c - d) + (3a + 4b)(d - c)
= (6a - 5b)(c - d) + (-3a - 4b)(c - d)
= -(c - d)(6a - 5b)(3a + 4b).
i) -3d(-9a - 2b) + 2c (9a + 2b)
= 3d(9a + 2b) + 2c (9a + 2b)
= 3d(9a + 2b) + 2c (9a + 2b).
= (3d + 2c)(9a + 2b).
j) a^2b^3(2a + 1) - 6ab^2(-1 - 2a)
= a^2b^3(2a + 1) + 6ab^2(2a + 1)
= (2a + 1)( a^2b^3 + 6ab^2)
The GCF of a^2b^3 and 6ab^2 is ab^2, so we have:
(2a + 1)ab^2(ab + 6)
= ab^2(ab + 6)(2a + 1).
Well all u have to do is 156%*70= 109.2 so N= 109.2