Answer:
f = 692 N
Explanation:
given data:
f =800N
a =1.2 m s^{2}
m= 90 kg
from newton's second law
net force 
therefore we have from above equation
ma =F - f
putting all value to get force of friction
1.2*90 = 800 - f
f = 692 N
The tectonic plates are made up of Earth's crust and the upper part of the mantle layer underneath. Together the crust and upper mantle are called the lithosphere. hope this helps :)
<span>436 km
The conversion factor between kilocalorie/hour and watts is 1.163 (1 kcal/hr = 1.163 watt). So let's convert the energy consumption of the bird from watts to kcal/hr
3.7 w / 1.163 w hr/kcal = 3.18 kcal /hr
1 gram of fat has 9 kcal, so the total number of kcals consumed will be 4 * 9 = 36.
So the bird can fly for 36/3.18 = 11.32 hours
The distance traveled will be
11.32 h * 3600 s/h * 10.7 m/s / 1000 m/km = 436 km</span>
The maximum velocity in a banked road, ignoring friction, is given by;
v = Sqrt (Rg tan ∅), where R = Radius of the curved road = 2*1000/2 = 1000 m, g = gravitational acceleration = 9.81 m/s^2, ∅ = Angle of bank.
Substituting;
30 m/s = Sqrt (1000*9.81*tan∅)
30^2 = 1000*9.81*tan∅
tan ∅ = (30^2)/(1000*9.81) = 0.0917
∅ = tan^-1(0.0917) = 5.24°
Therefore, the road has been banked at 5.24°.
Their "airspeeds" (speed through the air) are equal, but the one traveling in the
same direction as the jet-stream appears to move along the ground faster.