Answer:
B. How many of each atom are present in the compound
D. the simplified ratio of atoms in relation to each other
Explanation:
In a chemical formula, chemical elements or atoms are represented by a chemical symbol for example Fe for iron and Na for sodium, and the number of each atom is represented by a subscript such as CO2, where 2 is a subscript representing 2 atoms of oxygen.
A subscript represents the number of each atom in the compound and the simplified ratio of atoms in relation to each other. The simplified ratio of atoms in relation to each other means subscript shows the contribution of both the atoms in the compound, for example: N2 + 3H2 => 2NH3, it means the subscript showing the ratio or proportionate of atoms that is 2:2 for both nitrogen and hydrogen.
The subscript is always written below and to the right of the chemical symbol.
Hence, the correct answer is "B. How many of each atom are present in the compound and D. the simplified ratio of atoms in relation to each other"
Answer:
Cell Differentiation and Tissue.
Explanation:
tissues are organized communities of cells that work together to carry out a specific function.
Answer: The volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L
At constant temperature, the volume of a fixed mass of gas is inversely proportional to the pressure it exerts, then
PV = c
Thus, if the pressure increases, the volume decreases, and if the pressure decreases, the volume increases.
It is not necessary to know the exact value of the constant c to be able to use this law since for a fixed amount of gas at constant temperature, it is satisfied that,
P₁V₁ = P₂V₂
Where P₁ and P₂ as well as V₁ and V₂ correspond to pressures and volumes for two different states of the gas in question.
In this case the first oxygen gas state corresponds to P₁ = 1.00 atm and V₁ = 3.60 L while the second state would be P₂ = 2.50 atm and V₂ = y. Substituting in the previous equation,
1.00 atm x 3.60 L = 2.50 atm x y
We cleared y to find V₂,
V₂ = y =
= 1.44 L
Then, <u>the volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L</u>
Before the development of electrophoresis to separate macromolecules, high-speed centrifugation was used to isolate DNA.
A laboratory procedure called electrophoresis is used to divide DNA, RNA, or protein molecules according to their size and electrical charge. The molecules are moved by an electric current through a gel or other matrix. The technology of electrophoresis is crucial for the separation and examination of nucleic acids. At the lab bench, cloned DNA fragments are frequently isolated and worked with using nucleic acid electrophoresis.
High-speed centrifugation employs centrifugal force to separate particles with various densities or masses suspended in a liquid. High-speed rotation of the solution inside the tube causes each particle's angular momentum to experience centrifugal forces inversely proportionate to its mass.
To know more about electrophoresis refer to: brainly.com/question/28709201
#SPJ4
Answer:
The scaling factor is 5.
Explanation:
Hello there!
In this case, since the scaling factor is defined as the ratio of the molar mass of the molecular formula (complete) to the empirical formula (simplified), it is possible to compute it for the empirical formula of CH2O whose molar mass is 30 g/mol (12+2+16) as shown below:

Therefore, we can also infer that the molecular formula would be:

Best regards!