Yeah I can help I'm an A student in science
Given :
A chemical compound
.
To Find :
Fix the formula for
and write the full correct formula.
Solution :
We know, Potassium( K ) and Fluorine( F ) both have a valency of 1 i.e potassium can donate one electron and Fluorine can accept one electron only.
So, the chemical formula
is wrong because no element has filled electron.
Therefore, to stabilise the molecule, 1 Potassium atom should make a bond from 1 Fluorine i.e KF ( correct formula ) .
Hence, this is the required solution.
Answer:
A) Devices that transfer kinetic energy have a source of power that is in motion
Kinetic energy is the energy in motion, as such, a device that transfers kinetic energy transfers the energy the power source has into other energy forms
B) Kerosene does not easily cold start like diesel which can burn after compression
C) The first law of thermodynamics states that energy is conserved and it can neither be created nor destroyed, but can be changed from one form to another.
Therefore, when energy is not available in a given location or body, it cannot be obtained from that body or location
Explanation:
Answer:
10 molecules of NH₃.
Explanation:
N₂ + 3H₂ --> 2NH₃
As the N₂ supply is unlimited, what we need to do to solve this problem is <u>convert molecules of H₂ into molecules of NH₃</u>. To do so we use the <em>stoichiometric coefficients</em> of the balanced reaction:
- 15 molecules H₂ *
= 10 molecules NH₃
10 NH₃ molecules could be prepared from 15 molecules of H₂ and unlimited N₂.
The acceleration is defined by force divided by the mass of the object. So, When the smaller object is hit by a small force, it can produce equal acceleration which is same as that of the bigger body hit with large force.
<h3><u>Explanation:</u></h3>
Force is defined as the product of the mass of the body its applied to and the acceleration of the body in the direction of the force. So acceleration is force divided by the mass of the body.
Let the mass of the smaller body be m and that of the larger body be M.
The smaller force applied on the smaller body be f and the larger force applied on the larger body be F.
So acceleration of the larger body = F/M.
Acceleration of the smaller body = f/m.
For the accelerations to be same,
F/M = f/m.
Or F/f = M/m.
So when the ratio of the force applied on two bodies is in ratio of their masses, the acceleration becomes equal.