Answer: 
Explanation:
This problem can be solved by the following equation:

Where:
is the change in kinetic energy
is the electric potential difference
is the electric charge
Finding
:


Finally:

I’m not too sure but I think it’s 8,91 m/s2
<u> Ohms law: </u> This law relates voltage difference between two points. Mathematically, the law states that V=IR;
Where
V = voltage difference ; in volts
I = Current ; in Amperes
R = Resistance ; in ohms
<u>1. Answer : </u> given that R = 10 ; V= 12 V ; I = ?
From ohms law, I = V/R
= 12/10
= 1.2 Amp.
<u>2. Answer:</u> given that R = 10 ; V= ? ; I = 5
From ohms law, V = IR
= 10×5 = 50 V
<u>3 . Answer:</u> given that R = ? ; V= 120 ; I = 5
From ohms law, R = V/I
= 120/5
= 24 Ω
<u>4 . Answer:</u> given that R = ? ; V= 10 ; I = 20
From ohms law, R = V/I
= 10/20
= 0.5 Ω
<u>5 . Answer:</u> given that R = 480 ; V= 24 ; I = ?
From ohms law, I = V/R
= 24/480
= 0.05 A
<u>6. Answer:</u> given that R = 150 ; V= ? ; I = 1
From ohms law, V = IR
= 1 × 150
= 150 V
Answer:
153.6 kN
Explanation:
The elastic constant k of the block is
k = E * A/l
k = 95*10^9 * 0.048*0.04/0.25 = 729.6 MN/m
0.12% of the original length is:
0.0012 * 0.25 m = 0.0003 m
Hooke's law:
F = x * k
Where x is the change in length
F = 0.0003 * 729.6*10^6 = 218.88 kN (maximum force admissible by deformation)
The compressive load will generate a stress of
σ = F / A
F = σ * A
F = 80*10^6 * 0.048 * 0.04 = 153.6 kN
The smallest admisible load is 153.6 kN
Answer:
alcohol thermometer is preferred for a very cold region. Alcohol thermometer is preferred for a very cold region because its freezing point of alcohol is - 117°C. So, it can measure the temperature of the very cold region.