1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
14

Hằng số phổ biến chất khí

Physics
1 answer:
padilas [110]3 years ago
8 0

Answer:

please in english......................................

Explanation:

You might be interested in
An electric field of intensity 3.7 kN/C is applied along the x-axis. Calculate the electric flux through a rectangular plane 0.3
jekas [21]

Answer:

a)906.5 Nm^2/C

b) 0

c) 742.56132 N•m^2/C

Explanation:

a) The plane is parallel to the yz-plane.

We know that

flux ∅= EAcosθ

3.7×1000×0.350×0.700=906.5 N•m^2/C

(b) The plane is parallel to the xy-plane.

here theta = 90 degree

therefore,

0  N•m^2/C

(c) The plane contains the y-axis, and its normal makes an angle of 35.0° with the x-axis.

therefore, applying the flux formula we get

3.7×1000×0.3500×0.700×cos35°= 742.56132 N•m^2/C

4 0
3 years ago
Read 2 more answers
A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacemen
PilotLPTM [1.2K]

Answer:

The average angular acceleration is 0.05 radians per square second.

Explanation:

Let suppose that Ferris wheel accelerates at constant rate, the angular acceleration as a function of change in angular position and the squared final and initial angular velocities can be clear from the following expression:

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha\cdot (\theta-\theta_{o})

Where:

\omega_{o}, \omega - Initial and final angular velocities, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

\theta_{o}, \theta - Initial and final angular position, measured in radians.

Then,

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}

Given that \omega_{o} = 0\,\frac{rad}{s}, \omega = 0.70\,\frac{rad}{s} and \theta-\theta_{o} = 4.9\,rad, the angular acceleration is:

\alpha = \frac{\left(0.70\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(4.9\,rad\right)}

\alpha = 0.05\,\frac{rad}{s^{2}}

Now, the time needed to accelerate the Ferris wheel uniformly is described by this kinematic equation:

\omega = \omega_{o} + \alpha \cdot t

Where t is the time measured in seconds.

The time is cleared and obtain after replacing every value:

t = \frac{\omega-\omega_{o}}{\alpha}

If \omega_{o} = 0\,\frac{rad}{s},  \omega = 0.70\,\frac{rad}{s} and \alpha = 0.05\,\frac{rad}{s^{2}}, the required time is:

t = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{0.05\,\frac{rad}{s^{2}} }

t = 14\,s

Average angular acceleration is obtained by dividing the difference between final and initial angular velocities by the time found in the previous step. That is:

\bar \alpha = \frac{\omega-\omega_{o}}{t}

If \omega_{o} = 0\,\frac{rad}{s},  \omega = 0.70\,\frac{rad}{s} and t = 14\,s, the average angular acceleration is:

\bar \alpha = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{14\,s}

\bar \alpha = 0.05\,\frac{rad}{s^{2}}

The average angular acceleration is 0.05 radians per square second.

4 0
3 years ago
What is the displacement of a spring if it has a spring constant of 10 N/m, and a force of 2.5 N is applied?
pochemuha
O.25 m is the displacement
5 0
3 years ago
Read 2 more answers
I need help on this please help me
daser333 [38]
A is growth!!!!! B is reproduction!!!
3 0
3 years ago
An object travels with a constant speed in a circular path. The net force on the object is
Pepsi [2]

Answer:

toward the center

Explanation:

Before answering, let's remind the first two Newton Laws:

1) An object at rest tends to stay at rest and an object moving at constant velocity tends to continue its motion at constant velocity, unless acted upon a net force

2) An object acted upon a net force F experiences an acceleration a according to the equation

F=ma

where m is the mass of the object.

In this problem, we have an object travelling at constant speed in a circular path. The fact that the trajectory of the object is circular means that the direction of motion of the object is constantly changing: this means that its velocity is changing, so it has an acceleration. And therefore, a net force is acting on it. The force that keeps the object travelling in the circular path is called centripetal force, and it is directed towards the center of the circle (because it prevents the object from continuing its motion straight away).

So, the correct answer is

toward the center

8 0
3 years ago
Other questions:
  • Two person A and B of weight 60kg and 40kg respectively stand facing each other, and pull on a light rope streched between them.
    7·1 answer
  • Which physical property causes you to lean to one side when the bus you are traveling in takes a sharp turn?
    10·1 answer
  • true or false? J. J Thomson presented a plum pudding model of the atom. His model showed electrons randomly embedded in a cloud
    15·2 answers
  • How much work is done on 10.0C of charge to move it through a potential difference of 9V in 10s?
    7·1 answer
  • Suppose your network is connected to another network via a router. Which OSI model layer provides the information necessary to d
    14·1 answer
  • What happens to the force needed to stretch an elastic object?
    13·1 answer
  • If the intensity of an electromagnetic wave is 80 MW/m2, what is the amplitude of the magnetic field of this wave
    14·1 answer
  • DVDs and Blu-ray disks store information in patterns that are read by laser light. The shorter the wavelength of the light, the
    5·2 answers
  • How did Robert Whittaker change classification?
    12·2 answers
  • a is any object that is launched into the air with an initial velocity and moves in the air only ander the influence of gravity
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!