Answer:
the least integer for n is 2
Step-by-step explanation:
We are given;
f(x) = ln(1+x)
centered at x=0
Pn(0.2) 
Error < 0.01
We will use the format;
[[Max(f^(n+1) (c))]/(n + 1)!] × 0.2^(n+1) < 0.01
So;
f(x) = ln(1+x)
First derivative: f'(x) = 1/(x + 1) < 0! = 1
2nd derivative: f"(x) = -1/(x + 1)² < 1! = 1
3rd derivative: f"'(x) = 2/(x + 1)³ < 2! = 2
4th derivative: f""(x) = -6/(x + 1)⁴ < 3! = 6
This follows that;
Max|f^(n+1) (c)| < n! 
Thus, error is;
(n!/(n + 1)!) × 0.2^(n + 1) < 0.01
This gives;
(1/(n + 1)) × 0.2^(n + 1) < 0.01
Let's try n = 1
(1/(1 + 1)) × 0.2^(1 + 1) = 0.02
This is greater than 0.01 and so it will not work. 
Let's try n = 2
(1/(2 + 1)) × 0.2^(2 + 1) = 0.00267
This is less than 0.01.
So,the least integer for n is 2
 
 
        
             
        
        
        
Answer:
Acute
Step-by-step explanation:
Note the definitions: 
Obtuse: At least one of the angles are greater than 90°
Equilateral: All angles are congruent & equal to 60°
Acute: All angles are less than 90°
Right: At least one angle is equal to 90°
In this case, the triangle is a D) acute, for it fits the requirement for being an acute... all angles are less than 90°.
~
 
        
                    
             
        
        
        
This question is incomplete.
        
                    
             
        
        
        
Answer:
x equals 4.6
Step-by-step explanation:
if u need explanation plz tell me so i can help