<h2>
Number of revolutions required to travel 100 yards is 57.</h2>
Explanation:
Diameter of tire,D = 20 inches
Perimeter of tire = πD
Perimeter of tire = π x 20 = 62.8 inches
Distance traveled = 100 yards
1 yard = 36 inches
Distance traveled = 100 x 36 = 3600 inches
In one revolution it travels 62.8 inches.

Number of revolutions required to travel 100 yards is 57.
Well, its in the air, so the air is "upon" the ball. and when it comes down...you catch it, and throw it, and get someone out, and win the game, and just keep doing that, and boooommm you're and pro baseball player. Life is good
Answer: 3.41 s
Explanation:
Assuming the question is to find the time
the ball is in air, we can use the following equation:

Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity of the ball
is the time the ball is in air
is the acceleration due to gravity

Then:


Multiplying both sides of the equation by -1 and rearranging:

At this point we have a quadratic equation of the form
, which can be solved with the following formula:
Where:
Substituting the known values:
Solving the equation and choosing the positive result we have:
This is the time the ball is in air
Answer:
I disagree.
Explanation:
Yes, traits may be similar, but it all depends on the dominant and recessive alleles that are passed on. No one person can look alike. Even with twins, a widow's peak or close lobes can be different.
I hope this was the brainliest answer! Thank you for letting me help you.