D. 289
Take the formula:
K=5/9(Fahrenheit-32)+273
Plug in Fahrenheit
K=5/9 (60-32)+273
From here it is simple math and you can plug it into your calculator getting 288.5555556 and round to 289
Answer:
v_2 = 2*v
Explanation:
Given:
- Mass of both charges = m
- Charge 1 = Q_1
- Speed of particle 1 = v
- Charge 2 = 4*Q_1
- Potential difference p.d = 10 V
Find:
What speed does particle #2 attain?
Solution:
- The force on a charged particle in an electric field is given by:
F = Q*V / r
Where, r is the distance from one end to another.
- The Net force acting on a charge accelerates it according to the Newton's second equation of motion:
F_net = m*a
- Equate the two expressions:
a = Q*V / m*r
- The speed of the particle in an electric field is given by third kinetic equation of motion.
v_f^2 - v_i^2 = 2*a*r
Where, v_f is the final velocity,
v_i is the initial velocity = 0
v_f^2 - 0 = 2*a*r
Substitute the expression for acceleration in equation of motion:
v_f^2 = 2*(Q*V / m*r)*r
v_f^2 = 2*Q*V / m
v_f = sqrt (2*Q*V / m)
- The velocity of first particle is v:
v = sqrt (20*Q / m)
- The velocity of second particle Q = 4Q
v_2 = sqrt (20*4*Q / m)
v_2 = 2*sqrt (20*Q / m)
v_2 = 2*v
According to the task there should be the graph that supports Sally's hike, but after looking on the options it seems that Sally doesn't walks at a constant rate and there is the negative option that coincides with my thoughts. So, I bet the false statement is the third option represented in the scale above.
Answer:
R= 20 ohm
Explanation:
Given that
Current ,I = 6 A
Voltage difference ,ΔV = 120 V
Lets take resistance of the stem iron = R
We know that ,the relationship between current ,voltage difference and resistance is given as
ΔV = I R

Now by putting the values in the above equation we get

R= 20 ohm
Therefore the resistance of the steam will be 20 ohm.
Uneven heating of land and sea causes warm air over land to rise up, creating a low pressure zone. So wind blows in from the sea to fill this low pressure zone