Answer:
1.43 s
Explanation:
The time it takes for the container to reach the ground is determined only by the vertical motion of the container, which is a free-fall motion, so a uniformly accelerated motion with a constant acceleration of g=9.8 m/s^2 towards the ground.
The vertical distance covered by an object in free fall is given by

where
u = 0 is the initial vertical speed
t is the time
a= g = 9.8 m/s^2 is the acceleration
since u=0, it can be rewritten as

And substituting S=10.0 m, we can solve for t, to find the duration of the fall:

Answer:
Moon slowly moves eastward, rising later each day and passing through its phases:
Explanation:
Answer: A
Explanation:
Molecules speed up as heat is added
For example when water is heated as the water gets hotter the molecules speed up causing the water to boil and change phases into a gas (this is called evaporation)
In an ice cube the water molecules are frozen (barely moving compressed tight together) as the ice cube heats up the molecules start speeding up and moving further apart as the ice cube turns into liquid form. So as heat is added molecules speed up, move faster and spread further apart
<span> I picked up cost $1.50). If you look down inside of the showerhead you'll see a washer which constricts the water flow. If you take a drill and enlarge the hole, thereby increasing flow, the water </span>pressure<span> will increase</span>
The answer is 5.88 · 10⁻⁷<span> m.</span>
To calculate this we will use the light equation:
v = λ · f,
where:
v - the speed of light (units: m/s)
<span>λ - the wavelength of the ray (units: m)
</span>f - the frequency of the ray (units: Hz = 1/s <span>since Hz means cycles per second (f=1/T))
</span>
It is given:
f = 5.10 · 10¹⁴ Hz = 5.10 · 10¹⁴<span> 1/s
v = 2.998 </span>· 10⁸<span> m/s
</span><span>λ = ?
</span>
If v = λ · f, then λ = v ÷ f:
λ = 2.998 · 10⁸ m/s ÷ 5.10 · 10¹⁴ 1/s
= 0.588 · 10⁸⁻¹⁴ · m
= 0.588 · 10⁻⁶ m
= 5.88 · 10⁻⁷ m