<span>Ans : Initial E = KE = ½mv² = ½ * 1.2kg * (2.2m/s)² = 2.9 J
max spring compression where both velocities are the same: conserve momentum:
1.2kg * 2.2m/s = (1.2 + 3.2)kg * v → v = 0.6 m/s
which means the combined KE = ½ * (1.2 + 3.2)kg * (0.6m/s)² = 0.79 J
The remaining energy went into the spring:
U = (2.9 - 0.79) J = 2.1 J = ½kx² = ½ * 554N/m * x²
x = 0.0076 m ↠(a)</span>
Answer:
The astronomical model created and published by Nicholas Copernicus in the year 1543 is called Copernican heliocentrism. The model set the Sun in immobile position near the center of the solar system with Earth, as well as the other planets, spherical, epicycled and at consistent frequencies around it.
Answer: A.
As a diver rises, the pressure on their body decreases which allows the volume of the gas to decrease.
Explanation:
The problem is that a diver, experiences an increased pressure of water compresses nitrogen and more of it dissolves into the body. Just as there is a natural nitrogen saturation point at the surface, there are saturation points under water. Those depend on the depth, the type of body tissue involved, and also how long a diver is exposed to the extra pressure. The deeper a diver go, the more nitrogen the body absorbs.
The problem is getting rid of the nitrogen once you ascend again. As the pressure diminishes, nitrogen starts dissolving out of the tissues of the diver's body, a process called "off-gassing." That results in tiny nitrogen bubbles that then get carried to the lungs and breathed out. However, if there is too much nitrogen and/or it is released too quickly, small bubbles can combine to form larger bubbles, and those can do damage to the body, anything from minor discomforts all the way to major problems and even death.
Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!