Answer:
The nuclei are moving fast with respect to one another
Explanation:
Protons are found in the nucleus together with the neutrons while the electrons normally revolve round it.
However the protons appears fused in a way when electromagnetic force is applied by the nuclei moving at a very fast speed. This fast speed helps to keep the supposed neutrons fused together.
Answer:
a)-2m/s^2
b)27.2m/s
Explanation:
Hello! The first step to solve this problem is to find the mass of the block remembering that the definition of weight force is mass by gravity (g=9.8m / s ^ 2)
W=455N=weight
W=mg
W=455N=weight

The second step is to draw the free body diagram of the body (see attached image) and use Newton's second law that states that the sum of the forces is equal to mass by acceleration

for point b we use the equations of motion with constant acceleration to find the velocity

Where
Vf = final speed
Vo = Initial speed
=0
A = acceleration
=2m/s
X = displacement
=6.8m
Solving

Answer:
Force, F = 77 N
Explanation:
A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.
We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :
F = m × a
Where
m = mass = 55 kg
a = acceleration = 1.4 m/s²

F = 77 N
So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.
A. It is a compound made of oxygen and carbon
Based on internet sources, <span>the basic formulas are: v^2/r = (at)^2/r = a ==> at^2 = r ==> t = sqrt(r/a).
</span>
<span>Assuming the missing units are mutually compatible, as in the following example, they don't need to be known. </span>
<span>Acceleration = 1.6 cramwells/s^2 </span>
<span>Radius = 150 cramwells </span>
<span>t = sqrt(150/1.6) = 9.68 s.
I hope this helps.</span>