Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s
A. Blocking light waves that vibrate in the plane. (?)
Answer:
495m
Explanation:
ANSWER
u
stone
=10m/s (initial velocity of stone)
t=11s
∴H=−ut+
2
1
gt
2
(H=height of baloon)
H=−10×11+
2
1
×10×121=605−110=495m
Answer:
4.617 s
Explanation:
The speed of 60 mi/h can be converted to m/s:
(60 mi/h) × (1609.344 m/mi) × (1 h)/(3600 s) = 26.8244 m/s
The relationship between speed and acceleration is ...
v = at
t = v/a = (26.8244 m/s)/(5.81 m/s²) ≈ 4.617 s
It will take the car 4.617 seconds to reach 60 mi/h starting from rest.
Answer:
Explanation:
Tension T in the rope will create torque in solid cylinder ( axle ). If α be angular acceleration
T R = 1/2 M R²α ( M is mass and R is radius of cylinder )
= 1/2 M R² x a / R ( a is linear acceleration )
T = Ma / 2
For downward motion of the bucket
mg - T = m a ( m is mass and a is linear acceleration of bucket downwards )
mg - Ma / 2 = ma
a = mg / ( M /2 + m )
Substituting the values
a = 14.7 x 9.8 / ( 5.8+ 14.7 )
= 7 m / s²
A )
T = Ma / 2
= 5.8 x 7
= 40.6 N
B ) v² = u² + 2 a h
= 2 x 7 x 10.3
v = 12 m /s
C )
v = u + a t
12 = 0 + 7 t
t = 1.7 s