The result of rolling a number cube 7 times is a 7-digit number composed of digits 1,2,3,4,5 and 6 so that digits can repeat. The total number of possibilities is 6^7.
The number of possibilities where 4 appears exactly two times is 5^5*(7!-6!/2).
5^5 is the number of 5-digits numbers composed of digits 1,2,3,5 and 6 so that digits can repeat.
7! is the number of permutations of digits 1,2,3,4,4,5 and 6.
6! is the number of permutations of digits 1,2,3,{4,4},5 and 6.
We don't want to subtract all numbers where digits 4 appear side by side. That's why we must divide 6! by 2.
Finally, the probability is P=5^5(7!-6!/2)/7^7
Hello
To find an equal ratio, you can either multiply or divide each term in the ratio by the same number (but not zero). For example, if we divide both terms in the ratio 3:6 by the number three, then we get the equal ratio, 1:2.
Answer + Explanation
You look at the two denominators of the fractions and find the least common multiple of both of them.
1. the LCM of 2 and 5 is 10
2. the LCM of 3 and 5 is 15
3. the LCM of 4 and 6 is 12
4. the LCM of 6 and 9 is 18
Answer:

Step-by-step explanation:
We are given the function:

And we want to determine:

Substitute:
![\displaystyle \begin{aligned}g(x + a) - g(x) &=\left[5(x+a)^2 + 2(x+a)\right] -\left[5x^2+2x\right] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7Dg%28x%20%2B%20a%29%20-%20g%28x%29%20%26%3D%5Cleft%5B5%28x%2Ba%29%5E2%20%2B%202%28x%2Ba%29%5Cright%5D%20-%5Cleft%5B5x%5E2%2B2x%5Cright%5D%20%20%20%20%5Cend%7Baligned%7D)
And simplify:
![\displaystyle \begin{aligned}g(x + a) - g(x) &=\left[5(x+a)^2 + 2(x+a)\right] -\left[5x^2+2x\right] \\ \\ &= \left(5(x^2 + 2ax + a^2) + (2x + 2a) \right) + \left(-5x^2 - 2x\right) \\ \\ &= \left((5x^2 + 10ax + 5a^2) + (2x + 2a)\right) + \left(-5x^2 - 2x\right) \\ \\ &= (5x^2-5x^2) + (10ax + 2x - 2x) + (5a^2+2a) \\ \\ &= 10ax + 5a^2 + 2a \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7Dg%28x%20%2B%20a%29%20-%20g%28x%29%20%26%3D%5Cleft%5B5%28x%2Ba%29%5E2%20%2B%202%28x%2Ba%29%5Cright%5D%20-%5Cleft%5B5x%5E2%2B2x%5Cright%5D%20%5C%5C%20%20%5C%5C%20%26%3D%20%5Cleft%285%28x%5E2%20%2B%202ax%20%2B%20a%5E2%29%20%2B%20%282x%20%2B%202a%29%20%5Cright%29%20%2B%20%5Cleft%28-5x%5E2%20-%202x%5Cright%29%20%5C%5C%20%5C%5C%20%26%3D%20%5Cleft%28%285x%5E2%20%2B%2010ax%20%2B%205a%5E2%29%20%2B%20%282x%20%2B%202a%29%5Cright%29%20%2B%20%5Cleft%28-5x%5E2%20-%202x%5Cright%29%20%5C%5C%20%5C%5C%20%26%3D%20%285x%5E2-5x%5E2%29%20%2B%20%2810ax%20%2B%202x%20-%202x%29%20%2B%20%285a%5E2%2B2a%29%20%20%20%20%20%5C%5C%20%5C%5C%20%26%3D%2010ax%20%2B%205a%5E2%20%2B%202a%20%5Cend%7Baligned%7D)
In conclusion:
